TH`ESE - M.MOAM.INFO (2025)

Feb 7, 2015 - tour de France, du pistolet à billes et à fléchettes, du chamboule-tout d'échantillons et même un ...... mobility in soil and water systems (Beesley et al., 2010). Indeed, its ...... the Wadley Sb district (San Luis, Potosí, Mexico), Sci.

` THESE En vue de l’obtention du

´ DE TOULOUSE DOCTORAT DE L’UNIVERSITE D´ elivr´ e par : l’Universit´e Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Pr´ esent´ ee et soutenue le 26/10/2016 par :

Antoine PIERART Rˆ ole des champignons mycorhiziens ` a arbuscules et des bioamendements dans le transfert et la bioaccessibilit´ e de Cd, Pb et Sb vers les v´ eg´ etaux cultiv´ es en milieu urbain.

JURY M. Mikael MOTELICA-HEINO Mme. Camille DUMAT Mme. Corinne LEYVAL M. Christophe NGUYEN M. Juan-Carlos SANCHEZ-HERNANDEZ Mme. Eva SCHRECK Mme. Nathalie SEJALON-DELMAS

Professeur - Pr´esident Professeur Directeur de Recherche Directeur de Recherche Professeur Maitre de Conf´erences Maitre de Conf´erences

´ Ecole doctorale et sp´ ecialit´ e: ´ SDU2E : Ecologie fonctionnelle Unit´ e de Recherche : Laboratoire d’´ecologie fonctionnelle et environnement - EcoLab (UMR 5245) Directeur(s) de Th` ese : Mme. Camille DUMAT et Mme. Nathalie SEJALON-DELMAS Rapporteurs : Mme. Corinne LEYVAL, M. Christophe NGUYEN

Orl´eans Toulouse Nancy Bordeaux Tol`ede Toulouse Toulouse

i

NOTE TO READERS

To follow the charter of thesis from the University Paul Sabatier of Toulouse, the following thesis is written in the form of classical chapters and scientific publications (accepted, submitted or in preparation) in their edited form. For accepted and submitted articles, section, page, figure and table numbering was adapted to the manuscript. For the same reason, the abstract was written both in French and English. A summarized French version of the introduction and a full conclusion were also added.

Inspired from 9gag

If your brain just came in coma, Les orteils barbus, 2011

You can consult all the research scientific articles, posters from international congress, and research projects of my PhD with the following QR code:

ii CITATIONS

“Knowledge generates ignorance” Stuart Firestein, The pursuit of ignorance (TEDx conference)

“El ser humano puede ser el único animal capaz de destruirse si mismo. Ese es el dilema que tenemos por adelante” Jose Muica, Uruguay former president (2010-2015)

“Much to learn, you still have…” Yoda, Star Wars – attack of the clones

iii THANKS

Oops, I did it again… Britney Spears, 2000 On va commencer par une petite confession. Parce que oui, dans les remerciements on dit merci, mais on se confesse aussi : Au début, je n’avais pas envie ! ‘’Prends le temps d’y réfléchir Antoine, tu devrais faire une thèse.’’, m’a dit le couple de chercheurs de choc David & Marie-Hélène Macherel, un de ces (nombreux) jours pluvieux d’automne angevine pendant un stage au laboratoire IRHS il y a 5 ans. Ma réponse, ‘’La thèse, ça n’est pas pour moi, j’ai déjà fait bien assez de laboratoire’’. J’étais catégorique, plus jamais, décidé à bosser pour de bon. Finalement, je reste dans le monde de la recherche : stage de fin d’études en laboratoire, premier emploi en station d’expérimentation ; ça s’accroche, comme ce petit caillou sur lequel on marche et qui reste coincé dans la semelle pendant des semaines. Je crois que c’est cette petite phrase, à une époque où je ne savais finalement pas vraiment quoi faire de mon avenir, qui a trottée dans ma tête et m’a conduite ici ! Peut-être que vous n’aviez pas tort finalement ? Alors, merci à vous deux, et à toute votre équipe ! Un très grand merci à mes directrices en or, Camille et Nathalie. Vous m’avez fait confiance par téléphone, sans même que l’on se rencontre, dès le début de cette histoire ! Et vous avez continué pendant ces trois années au point même de partir vers d’autres horizons la dernière année. Et pourtant, même à distance, vous avez toujours été là pour m’aider, me guider, parler de tout et de rien, que ce soit scientifique ou non et c’est agréable d’être aussi bien encadré. Parce que ce n’est encore que le début, et qu’il reste un bon tas de pages à lire. A mes rapporteurs, merci d’avoir accepté d’évaluer mes travaux et bon courage ! J’ai une pensée particulière pour l’ensemble de notre société, qui par ses travers m’a fourni un bel objet d’étude. La pollution, c’est moche. Ceci dit, ça crée de l’emploi. Merci ou pas, à chacun de voir. Merci EcoLab, et en particulier l‘équipe Biogeochim, devenue Biz pour m‘avoir trouvé un bureau et des espaces de recherche autant en laboratoire que dans les serres. Un grand merci aux techniciennes, Marie-Jo et Virginie. On a assez peu travaillé ensemble finalement, mais vous avez toujours su vous montrer disponibles et réactives pour m’aider et m’aiguiller quand j’en avais besoin. Annick, merci pour ta gentillesse et ta disponibilité. Ecolab c’est évidemment tant d’autres rencontres, d’un bout à l’autre de ces longs couloirs un peu sombres que je ne pourrai pas passer tout le monde en revue. D’abord parce que c’est très long, ensuite parce que ceux qui me connaissent savent que je suis très mauvais avec les prénoms ! Merci à tous pour ces petits moments, qui ont rendu le quotidien si agréable.

iv Il y a quand même le bureau 204, ma deuxième maison où il s’est passé tant de choses. Du curling, le tour de France, du pistolet à billes et à fléchettes, du chamboule-tout d’échantillons et même un punching-ball. Du boulot aussi, ne vous méprenez pas ! Un grand merci à tous ses habitants, compagnons de galère et amis qui sont venus et partis : Thibaut, qui m’a initié aux joies de la bioaccessibilité. Xiaoling et sa punk attitude, toujours prête à tout essayer ! Adrien, sacré rencontre. On est même devenu colocs, brassé de la bière, (tenté de) faire pousser des champignons, faire fermenter toutes sortes de choses depuis la choucroute jusqu’au sureau en passant par la betterave et j’en passe ! Léonard, pour ce face à face pendant plus de deux ans. Tu incarnes la jovialité que je n’ai pas ; si si, la science l’a prouvé ! Et comme je suis sûr que ça te fait plaisir, cette dédicace est dans ta police préférée. Youen, ce parfait mélange de bonne humeur et de complaintes qui te caractérise tant, tu m’as bien fait rire ! Et puis Théo, arrivant tardif mais tu as bien rattrapé ton retard. Les jours racines ou feuilles n’ont plus de secret pour moi, ou presque ! Il y en a quelques-uns qui ne sont pas vraiment du bureau mais vous le méritez bien quand même : Sophia, c’est comme si tu étais dans le bureau, à moitié finalement. Merci pour ton sourire, ta très bonne cuisine et pour garder Loulou de temps en temps. Pierre-Alexis, grand fan de chanson Française ! Stéphane, on se soutient mutuellement, commencer ensemble, terminer ensemble ! Merci à tout le LRSV pour m’avoir accueilli chaleureusement pour toutes ces manips que je ne pouvais pas faire à EcoLab. J’ai trouvé chez vous une troisième maison pleine d’entraide, et de discussions passionnantes. Vous m’avez tous énormément appris et motivé, en particulier Christophe et Francis. Merci aussi à Alexis, Elise et Arthur pour votre aide précieuse (indispensable !) en métagénomique. Aller plus hauuuuuuuuuuuut… Tina Arena, 1997

(Vous l’avez chanté dans votre tête ? maintenant oui…)

Quand on arrive à saturation, des tubes, des flacons, des échantillons et des citations, il faut un exutoire ; pour moi c’était l’escalade. Grimper, toujours plus, en salle ou en nature, surtout en nature pour tout oublier. Grace à elle, j’ai appris à connaitre des gens formidables. Pour n’en citer que deux : Jojo, l’infatigable autant sur les falaises qu’en soirée ! Vincent, Je ne sais pas si je dois te remercier pour les patates ou la grimpe, on va dire les deux. Y hay también todas estas semanas que pasé en Toledo a descubrir el mundo apasionante de las enzimas del suelo y del biochar. Todo esto con croissant a la plancha, heavy metal música en un ambiente memorable. ¡Muchísimas gracias JuanK, fue un gran placer! Viví allá en la familia la más internacional e increíble del mundo: Marga y sus hermanos, Miguel, Raquel, Rodrigo, Marjio, Kevin, Shane, Viviana, Johnson, Olivia y tantas otras personas que tenían esta misma visión de un mundo que se comparte, Gracias para todo. Volveré pronto, ¡para vacaciones esta vez!

v A tous mes amis, d’ici ou ailleurs, merci de m’avoir suivi et soutenu pendant ces trois années. En particulier Luiz, coloc d’un temps pour ces soirées passées à refaire le monde. Maxime et Mélanie, qui êtes venus jusqu’à Madrid profiter des tapas ! La douche baquet dans la chambre triple de 12m², ça c’est de l’amitié. Merci Manu, toi seul sais pourquoi, gros ! A tous ceux que j’oublie, merci et désolé, ou l’inverse. Merci à toute ma famille, Papa, Maman, Clément et Hadrien. C’est aussi cette enfance dans la nature et tous ces moments partagés qui m’ont guidé jusqu’ici. Vous m’avez toujours soutenu dans mes décisions, même si vous vous êtes probablement beaucoup demandé pourquoi une thèse ? Pourquoi pas un vrai travail ? Pourquoi encore être étudiant après une école d’ingénieur ? Pourquoi, pourquoi, pourquoi ? N’est-ce pas l’un des fondements de la recherche de se demander pourquoi ? But of all these friends and lovers, There is no one compares with you. The Beatles, In my life

Enfin, un immense merci à toi ma Bichette, pour m’avoir épaulé tous les jours, autant dans mes réussites que dans mes passages à vide, où malgré mon air sûr de moi j’avais bien besoin de toi. Loulou, Mimi, merci d’avoir pris soin de mon moral en creusant dans le jardin et de mon sommeil en dormant sur ma tête. Remercier les bêtes, pourquoi pas… Les enfants ne sont pas encore là, alors on se rabat sur ce que l’on peut.

vi ABBREVIATIONS AMF: Arbuscular Mycorrhizal Fungi %B: Bioaccessible fraction BF: Bioaccumulation Factor BARGE: BioAccessibility Research Group of Europe CARBOX: Carboxylesterase CAT: Catalase DEHY: Dehydrogenase GLUCO: β-Glucosidase ICP-MS: Induced Coupled Plasma-Mass Spectrometry ICP-OES: Induced Coupled Plasma-Optical Emission Spectrometry KSb: potassium antimony tartrate trihydrate %OM: Total Organic Matter content OTU: Operational Taxonomic Unit PCR: Polymerase Chain Reaction PHO_ACI: Phosphatase Acide PHO_ALK: Phoshatase Alkaline PROTEA: Protease SCG: Spent Coffee Ground SCGc: charred Spent Coffee Ground (biochar) SEM: Scanning Electron Microscopy s-µ-p: Soil-microorganism-plant (interface) TEM: Transmission Electron Microscopy TF: Translocation Factor TM: (ETM in French version) General term for metalloid and heavy metal trace elements UBM: Unified Barge Method UPA: (AUP in French version) Urban and Peri-urban Agriculture UREA: Urease

vii VALUATION OF WORKS Published articles Pierart A., Shahid M., Séjalon-Delmas N., Dumat C., 2015. Antimony bioavailability: knowledge and research perspectives for agriculture. J. of Hazar. Mat., 289, 21. Xiong T., Austruy A., Pierart A., Shahid M., Schreck E., Mombo S., Dumat C., 2016a. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J. of Env. Sc., 46, 16-27. Xiong T., Dumat C., Pierart A., Shahid M., Kang Y., Li N., Bertoni G., Laplanche C., 2016b. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas, South China. Env. Geochem. Health, 1-19. Goix S., Mombo S., Schreck E., Pierart A., Lévêque T., Deola F., Dumat C., 2015. Field isotopic study of lead fate and compartmentalization in earthworm–soil–metal particle systems for highly polluted soil near Pb recycling factory. Chemosphere, 138, 10-17. Mombo S., Foucault Y., Deola F., Gaillard I., Goix S., Shahid M., Schreck E., Pierart A., Dumat C., 2016. Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. Journal of Soils and Sediments, 16, 1214-1224 Mombo S., Schreck E., Dumat C., Laplanche C., Pierart A., Longchamp M., Besson P., CastrecRouelle M., 2016. Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize. Envir. Geo. and health, 38, 3, 869-883. Dumat C., Wu J.T., Pierart A., Sochacki L., 2015. Interdisciplinary and participatory research for sustainable management of arsenic pollution in French collective gardens: collective process of risk manufacture, in: 9ième Journées de Recherche En Sciences Sociales. Nancy, pp. 1-20. Sanchez-Hernandez J.C., Sandoval M., Pierart A., 2017. Short-term response of soil enzyme activities in a chlorpyrifos-treated Andisol: use of enzyme-based indexes. Ecological Indicators, 73, 525-535.

Submitted articles Pierart A., Dumat C., Braud A., Séjalon-Delmas N., under review. How do soil biofertilizers and organic amendments influence Cd phytoavailability and human bioaccessibility? J. of Hazar. Mat.

viii

Oral communications Pierart A., Dumat C., Séjalon-Delmas N., Plant-Fungi Association: Track to Dig for Sustainable Agriculture; Beware of Metal Pollutions in Urban Areas. 18th International Conference on Heavy Metals in the Environment, 12-15 September 2016, Ghent, Belgium. Pierart A., Gestion raisonnée des pollutions pour une agriculture durable. Favoriser les agricultures urbaines durables Retours d’expériences et initiatives innovantes à développer, 5th november 2015, Auzeville, France. Pierart A., Braud A., Lebeau T., Séjalon-Delmas N., Dumat C., Influence of mycorrhization and soil organic matters on lead and antimony transfers to vegetables cultivated in urban gardens: environmental and sanitary consequences. 24è Réunion des Sciences de la Terre, 27-31 October 2014, Pau, France. Dumat C., Wu J.T., Pierart A., Sochacki L., Interdisciplinary and participatory research for sustainable management of arsenic pollution in French collective gardens: collective process of risk manufacture, 9ième Journées de Recherche En Sciences Sociales. 10-11 december 2015, Nancy, France. Mombo S., Foucault Y., Shahid M., Gaillard I., Goix S., Schreck E., Pierart A., Dumat C., Metal bioaccessibility to refine human health risk assessment: case of Pb and Cd pollution in kitchen gardens. 24è Réunion des Sciences de la Terre, 27-31 October 2014, Pau, France.

Posters Pierart A., Dumat C., Séjalon Delmas N. Influence de la mycorhization sur la phytodisponibilité et la bioaccessibilité du plomb, du cuivre et de l’antimoine présents dans les sols. Focus sur les jardins potagers contaminés en zones urbaines. Les 12è Rencontres de la fertilisation raisonnée et de l'analyse, 18-19 november 2015, Lyon, France. Pierart A., Dumat C., Séjalon-Delmas N. How do mycorrhizal symbiosis and organic matter influence Cd transfer from soil to edibles? Special focus on health threats of urban and periurban soils. 8th International Conference on Mycorrhiza, 3-7 August 2015, Flagstaff, Arizona, USA. Pierart A., Mombo S., Dumat C., Séjalon-Delmas N. Antimony in urban gardens: mycorrhizal symbiosis and organic matter influence on vegetables accumulation and human bioaccessibility. Congrès InterSol 24-26 Mars 2015, Paris. Pierart A., Braud A., Lebeau T., Séjalon-Delmas N., Dumat C. Influence of mycorrhization and soil organic matters on lead and antimony transfers to vegetables cultivated in urban gardens: environmental and sanitary consequences. International Congress on Mycorrhizae, 15-17 October 2014, Marrakesh, Morocco. Shahid M., Pierart A., Sabir M., Ghafoor A., Dumat C. Assessing the effect of organic amendments on soil properties, nickel availability in soil and uptake by Trifolium alexandrinum L. 24è Réunion des Sciences de la Terre, 27-31 October 2014, Pau, France.

ix TABLE OF CONTENTS NOTE TO READERS............................................................................................................................................................... i CITATIONS ...........................................................................................................................................................................ii THANKS ..............................................................................................................................................................................iii ABBREVIATIONS………………………………………………………………………………………………………………………………………………………….…iv VALUATION OF WORKS .....................................................................................................................................................vii TABLE OF CONTENTS ..........................................................................................................................................................ix LISTE OF FIGURES ...............................................................................................................................................................xi LISTE OF TABLES ............................................................................................................................................................... xiii

CHAPTER 1. SCIENTIFIC CONTEXT: HOW AND WHY STUDY INORGANIC POLLUTION IN URBAN SOILS? ............ 1 1.1. INTRODUCTION GÉNÉRALE .................................................................................................................................. 2 1.2. METAL(LOID) SOIL CONTAMINATION AND POLLUTION .............................................................................................. 9 1.3. SB BIOAVAILABILITY: KNOWLEDGE AND RESEARCH PERSPECTIVES FOR SUSTAINABLE AGRICULTURE………………………………..17 1.4. URBAN AGRICULTURE, TO A SAFE AUTO-CONSUMPTION MODEL ............................................................................... 38 1.4. USING OF BIOFERTILIZERS AND ORGANIC AMENDMENTS TO DEAL WITH METALLOID CONTAMINATION .............................. 41 1.5. HEALTH RISK ASSESSMENT & HUMAN BIOACCESSIBILITY .......................................................................................... 53 1.6. WHAT DO WE STUDY AND HOW DO WE PROCEED? ................................................................................................ 56 CHAPTER 2. MATERIAL AND METHODS .......................................................................................................... 59 2.1. SOIL DESCRIPTION ........................................................................................................................................... 60 2.2. FULL PLANT CULTIVATED IN POT UNDER GREENHOUSE CONDITION............................................................................. 62 2.3. SB TRANSFER IN SIMPLIFIED HYDROPONIC SYSTEMS ................................................................................................ 64 2.4. INFLUENCE OF BIOCHAR AND SB CONCENTRATION ON SOIL MICROBIAL ACTIVITY .......................................................... 66 2.5. MEASUREMENT OF METAL(LOID) CONCENTRATION................................................................................................ 69 2.6. FUNGAL DESCRIPTION ...................................................................................................................................... 71 2.7. ENZYME ASSAY AND MATHEMATICAL INDEXES....................................................................................................... 78 2.8. MICROSCOPY ................................................................................................................................................. 82 2.9. STATISTICAL ANALYSIS ...................................................................................................................................... 83 CHAPTER 3. HOW DO SOIL AMF AND OM INFLUENCE CD PHYTOAVAILABILITY AND BIOACCESSIBILITY? ....... 85 3.1. GENERAL INTRODUCTION ................................................................................................................................. 85 3.2. SUBMITTED ARTICLE……………………………………………………………………………………………………………………………………87 3.3. ADDITIONAL RESULTS .................................................................................................................................... 108 3.4. GENERAL CONCLUSION .................................................................................................................................. 110 CHAPTER 4. INFLUENCE OF AMF AND OM ON PB AND SB ACCUMULATION AND BIOACCESSIBILITY ............ 111 4.1. GENERAL INTRODUCTION ............................................................................................................................... 111 4.2. PB AND SB ACCUMULATION INFLUENCED BY AMF COMMUNITY AND OM IN A CROP ROTATION .................................... 113 4.3. ADDITIONAL RESULTS AND DISCUSSION ............................................................................................................. 133 4.4. GENERAL CONCLUSION .................................................................................................................................. 143 CHAPTER 5. USING AN HYDROPONIC APPROACH TO STUDY THE ROLE OF AMF IN VEGETABLE SB UPTAKE . 145 5.1. GENERAL INTRODUCTION ............................................................................................................................... 145 5.2. EXPERIMENTAL DESIGN SUMMARY.................................................................................................................... 147 5.3. RESULTS AND DISCUSSION .............................................................................................................................. 147 5.4. CONCLUSIONS AND PERSPECTIVES .................................................................................................................... 153

x CHAPTER 6. PHYTOACCUMULATION OF SB AND SOIL ENZYME ACTIVITIES: EFFECTS OF OM AND BIOCHAR..155 6.1. INTRODUCTION............................................................................................................................................. 155 6.2. EXPERIMENTAL DESIGN .................................................................................................................................. 157 6.3. RESULTS AND DISCUSSION .............................................................................................................................. 158 6.4. CONCLUSION ............................................................................................................................................... 171 6.5. SUPPLEMENTARY MATERIALS........................................................................................................................... 172 CHAPTER 7. DISCUSSION .............................................................................................................................. 173 7.1. SPECIES AND VARIETIES HAVE TO BE CHOSEN WISELY ............................................................................................ 173 7.2. IS IT RISKY OR SAFE TO USE ORGANIC MATTER AMENDMENTS IN UPA? .................................................................... 175 7.3. WHAT ABOUT BIOFERTILIZERS LIKE MYCORRHIZAL FUNGI?..................................................................................... 177 7.4. COULD BIOCHAR APPLICATION IN URBAN GARDENS REDUCE TM IMPACT ON CROPS QUALITY?...................................... 179 7.5. SOME RECOMMENDATIONS ............................................................................................................................ 180 CHAPTER 8. GENERAL CONCLUSION & PERSPECTIVES .................................................................................. 186 BIBLIOGRAPHY……………………………………………………………………………………………………………………………….………….201

xi LIST OF FIGURES

FIGURE 1.1: BIOGEOCHEMICAL CYCLE OF TM.................................................................................................................. 10 FIGURE 1.2: PROPORTION OF MAJOR CONTAMINATION SOURCES FOR TM ENTRANCE IN ARABLE LANDS...................................... 10 FIGURE 1.3: CADMIUM CONTENT IN FRENCH SOILS .......................................................................................................... 11 FIGURE 1.4: LEAD CONTENT IN SOIL............................................................................................................................... 12 FIGURE 1.5: ANTIMONY, AN ALLOY IN AMMUNITIONS ....................................................................................................... 14 FIGURE 1.6: HOW TO TREAT A POLLUTED OR CONTAMINATED SOIL? .................................................................................... 15 FIGURE 1.7: MYCORRHIZAL ROLE IN ANTIMONY (SB) TRANSFER FROM SOIL TO PLANTS………………………………………………………… 27 FIGURE 1.8: ANTIMONY BIOACCUMULATION IN EARTHWORMS ........................................................................................... 28 FIGURE 1.9: FERTILIZING CROPS, COSTS AND BENEFITS. ..................................................................................................... 41 FIGURE 1.10: DIFFERENT GROUP OF MYCORRHIZAL FUNGI ................................................................................................. 42 FIGURE 1.11: ARBUSCULAR MYCORRHIZAL FUNGI SYMBIOSIS IN A NUTSHELL ......................................................................... 43 FIGURE 1.12: SIMPLIFIED BIOCHAR PRODUCTION, FROM ORGANIC MATTER TO BIOCHAR INTERESTS AND RISKS ............................. 52 FIGURE 1.13: SCHEMATIC REPRESENTATION OF THE BIOACCESSIBILITY OF AN ELEMENT WHEN INGESTED AND DIGESTED ................. 54 FIGURE 1.14: REPRESENTATION OF THE TRIALS’ GRADIENT OF COMPLEXITY ........................................................................... 57 FIGURE 2.1: SCIENTIFIC QUESTIONS DEVELOPED IN THE PRESENT THESIS................................................................................ 59 FIGURE 2.2: STUDIED SOIL LOCALIZATION. BZC, BAZOCHES; NTE, NANTES; TLD, TOLEDO. ..................................................... 61 FIGURE 2.3: EXPERIMENTAL DESIGN OF A CROP ROTATION ON CONTAMINATED SOILS .............................................................. 63 FIGURE 2.4: EXPERIMENTAL DESIGN FOR HYDROPONIC CARROT CULTIVATION TREATED WITH SB................................................ 65 FIGURE 2.5: HOME-MADE BIOCHAR (SCGC) FROM SPENT COFFEE GROUND (SCG)................................................................. 66 FIGURE 2.6: EXPERIMENTAL DESIGN OF PEAS (PISUM SATIVUM L.) ...................................................................................... 68 FIGURE 2.7: PICTURE OF STAINED LEEK ROOTS ................................................................................................................. 71 FIGURE 2.8: THE MOTHURGUI INTERFACE AND THE PIPELINE OF ANALYSIS DEVELOPED AND USED FOR SEQUENCE CLEANING .......... 73 FIGURE 2.9: THE USEARCH USER FRIENDLY INTERFACE ...................................................................................................... 75 FIGURE 2.10: SEAVIEW INTERFACE AND NON-ALIGNED SEQUENCES (EXTRACT). EACH COLOR REPRESENT A NUCLEOTIDE. ............... 77 FIGURE 2.11: ALIGNED SEQUENCES, WITH MUSCLE ALGORITHM.......................................................................................... 77 FIGURE 2.12: EXAMPLE OF PHYLOGENIC TREE (CLAD FORMAT). .......................................................................................... 77 FIGURE 2.13: THE BASIC PRINCIPLE OF SCANNING ELECTRON MICROSCOPY .......................................................................... 82 FIGURE 3.1: SCIENTIFIC OBJECTIVES AND METHODS FOR CD FATE AT THE SOIL-MICROORGANISM-PLANT INTERFACE. ..................... 86 FIGURE 3.2: CADMIUM CONCENTRATION IN PLANT ORGANS............................................................................................... 96 FIGURE 3.3: CADMIUM BIOACCESSIBLE FRACTION IN EDIBLE PARTS. ..................................................................................... 96 FIGURE 3.4: SCHEMATIC REPRESENTATION OF CD FLUXES FROM AERIAL DEPOSITION THROUGH SOIL TO (AND WITHIN) PLANTS …….101 FIGURE 3.51: SCANNING ELECTRON MICROSCOPY COUPLED WITH X-RAY ANALYSIS OF MYCORRHIZED LEEK ROOTS ...................... 108 FIGURE 4.1: SCIENTIFIC OBJECTIVES FOR STUDYING THE FATE OF PB AND SB AT THE ‘SOIL-MICROORGANISM-PLANT’ INTERFACE. ... 112 FIGURE 4.2: METALLOID (PB OR SB) ACCUMULATION IN PLANTS ORGANS (AVERAGE ± STANDARD DEVIATION)........................... 124 FIGURE 4.3: SCANNING ELECTRON MICROSCOPY COUPLED WITH X-RAY ANALYSIS OF MYCORRHIZED LEEK ROOTS ........................ 126

xii FIGURE 4.4: RELATIVE ABUNDANCE OF FUNGI IN DIFFERENT TREATMENTS........................................................................... 127 FIGURE 4.5: ONE COPY OF RIBOSOMAL GENOME SEQUENCE WITH ITS INTERNAL TRANSCRIBED SPACERS (ITS1&2).................... 133 FIGURE 4.6: TAXONOMY OF GLOMEROMYCOTA OBTAINED FOR THE ARTIFICIAL COMMUNITY WITH EACH PRIMER PAIR ................. 136 FIGURE 4.7: NEIGHBOR-JOINING PHYLOGENIC TREE OF THE ARTIFICIAL COMMUNITY’S OTU................................................... 137 FIGURE 5.1: OBJECTIVES OF THE HYDROPONIC EXPERIMENT REGARDING AMF INFLUENCE ON SB TRANSFER TO PLANTS ............... 146 FIGURE 5.2: EXPERIMENTAL DESIGN FOR HYDROPONIC CARROT CULTIVATION TREATED WITH SB.............................................. 147 FIGURE 5.3: PLANT DRY BIOMASS AND MYCORRHIZATION RATE (%)................................................................................... 148 FIGURE 5.4: SB CONTENT IN MG PER KG DRY WEIGHT OF PLANT ORGANS IN CARROT AND LETTUCE. .......................................... 149 FIGURE 5.5: MAIN RESULTS OF THE INFLUENCE OF AMF ON SB TRANSFER DEPENDING ON PLANT AND SB SPECIATION ................. 153 FIGURE 5.6: THE USE OF DOUBLE COMPARTMENT IN VITRO HAIRY ROOT SYSTEM .................................................................. 154 FIGURE 6.1: CONCEPTUAL SCHEME ILLUSTRATING THE MAIN OBJECTIVES OF THE SB–BIOCHAR–SOIL ENZYMES EXPERIMENT.......... 156 FIGURE 6.2: EXPERIMENTAL DESIGN. PEAS (PISUM SATIVUM L.) ....................................................................................... 157 FIGURE 6.3: IBRV2 INDEX OF CONTROL SOILS (SCG- AND SCGC-FREE) .............................................................................. 159 FIGURE 6.4: DETAIL OF THE A FACTOR FROM THE IBRV2................................................................................................. 160 FIGURE 6.5: VARIATION OF THE IBRV2 INDEX (Δ T2-T0) ................................................................................................ 164 FIGURE 6.6: DETAIL OF THE A-SCORES FROM THE IBRV2................................................................................................. 166 FIGURE 6.7: SCGC EXTRACTION FROM SOIL. ................................................................................................................. 168 FIGURE 6.8: SCANNING ELECTRON MICROSCOPY (A), OPTIC MICROSCOPY (B) (C) OF FUNGAL STRUCTURES AND BACTERIA ........... 168 FIGURE 6.9: SCGC AFTER EXTRACTION AND WASHING .................................................................................................... 169 FIGURE 6.10: DEHYDROGENASE ACTIVITY BEFORE AND AFTER STERILIZATION ....................................................................... 170 FIGURE 6.11: INDEXES OF CONTROL SOILS (SCG- AND SCGC-FREE) DEPENDING ON SB CONCENTRATIONS ................................ 172 FIGURE 7.1: PICTURE OF LEEK ROOT CELLS IN TRANSMISSION ELECTRONIC MICROSCOPY COUPLED WITH X RAY ANALYSIS.. ............ 174 FIGURE 7.2: CHOOSING THE BEST PLANT TYPE FACING A HAZARDOUS CONTAMINATION ......................................................... 175 FIGURE 7.3: FACTORS () AFFECTING THE POSSIBLE EFFECTS OF BIOAMENDMENTS ON TM FATE IN SOIL.................................. 177 FIGURE 7.4: ANNUAL (2012) MEAN OF PM10............................................................................................................. 181 FIGURE 7.5: WIND DIRECTION AND BUILDING ARRANGEMENT EFFECTS ON PARTICLE DISPERSION. ............................................ 182 FIGURE 7.6: MANAGEMENT OF A CONTAMINATION IN URBAN AGRICULTURE PROJECT ........................................................... 183

xiii LIST OF TABLES TABLE 1.1: LEGAL THRESHOLD OF PB IN DRINKING WATER, SOIL, AND ALIMENTS .................................................................... 13 TABLE 1.2: MINIMAL AND MAXIMAL SB VALUES IN SELECTED SOIL AND LIVING ORGANISMS…………………………………………………… 20 TABLE 1.3: ANTIMONY BIOACCUMULATIONFACTOR (BAF) IN EDIBLE PLANTS………………………………………..……………………………21 TABLE 1.4: REVIEW OF SB CONTENT IN EDIBLE PLANTS IN RELATION WITH THE FORM OF SB AND TYPE OF EXPERIMENT ................... 23 TABLE 1.5: REVIEW OF SB CONTENT IN RICE IN RELATION WITH THE FORM OF SB AND TYPE OF EXPERIMENT……………………………….25 TABLE 1.6: MYCORRHIZAL RESPONSE UNDER TM STRESS…………………………………………………………………………………..…………..26 TABLE A.1: SOLUBLE ANTIMONY FRACTION………………………………………………………………………………………………………………….35

TABLE A.2: ANTIMONY BIOACCUMULATION FACTOR (BAF) IN EDIBLE PLANTS………………………………………………………………..…..36 TABLE A.3: PRESENCE OR ABSENCE OF (CH3)3SB WHEN SCOPULARIOPSIS BREVICAULIS IS EXPOSED TO DIFFERENT SB SPECIES ………..37 TABLE A.4: DAILY INTAKE OF ANTIMONY IN CHINA WITH REGARD TO TOLERABLE DAILY INTAKE (TDI) ………………………………………37 TABLE 1.7: SYNTHESIS OF AMF IMPACT ON TM MOBILITY IN SOIL AND PHYTOACCUMULATION ……..………………………………………44 TABLE 2.1: BAZOCHES (BZC) AND NANTES (NTE) SOIL CHARACTERISTICS………………………………………………………………………….61 TABLE 2.2: TOLEDO SOIL CHARACTERISTICS AT THE END OF THE EXPERIMENT ......................................................................... 67 TABLE 2.3: METALLOID RECOVERY RATE ......................................................................................................................... 70 TABLE 2.4: PRIMER PAIRS USED FOR ILLUMINA MISEQ IDENTIFICATION OF AMF COMMUNITIES. .............................................. 72 TABLE 2.5: POTENTIAL ENZYME ACTIVITIES MEASURED IN PEAS EXPERIMENT ......................................................................... 78 TABLE 3.1: SOIL CHARACTERISTICS AT BAZOCHES (BZC) AND NANTES (NTE) ........................................................................ 90 TABLE 3.2: MEASURED PARAMETERS IN SOIL AND PLANT ................................................................................................... 95 TABLE 3.3: MOBILE (CACL2 EXTRACT) AND MOBILIZABLE (EDTA EXTRACT) FRACTIONS (%) OF CADMIUM IN SOIL ......................... 95 TABLE 3.4: AVERAGE CADMIUM DAILY INTAKE (DI) AND MAXIMAL DAILY CONSUMPTION (DCMAX)............................................ 97 TABLE 1 (SM): CHEMICAL COMPOSITION OF LOMBRICOMPOST……………………………………………………………………………………..107 TABLE 2 (SM): DETAIL OF SIGNIFICANT GROUPS AT Α = 5% FOR CD CONCENTRATION IN PLANT ORGANS…………………………………107 TABLE 3.5: SOIL BIOACCESSIBLE FRACTION OF CD ........................................................................................................... 109 TABLE 3.6 TWO TAILS PEARSON CORRELATION MATRIX ................................................................................................... 110 TABLE 4.1: BAZOCHES (BZC) AND NANTES (NTE) SOIL CHARACTERISTICS........................................................................... 116 TABLE 4.2: METALLOID RECOVERY RATE. AVERAGE ± STANDARD ERROR, % ........................................................................ 118 TABLE 4.3: LEAD (PB) AND ANTIMONY (SB) CONTENT IN BAZOCHES (BZC) AND NANTES (NTE) SOILS ..................................... 122 TABLE 4.4: SOIL PHYSICOCHEMICAL DATA (PH, %OM) AND PLANT (LEEK OR LETTUCE) PARAMETERS ....................................... 122 TABLE 4.5: RELATIVE ABUNDANCE OF FUNGI FROM GLOMEROMYCOTA PHYLUM IN THE BIO-AUGMENTATION SOLUTION.............. 125 TABLE 4.6: ARTIFICIAL COMMUNITY DESIGNED FOR ILLUMINA MISEQ ANALYSIS ................................................................... 135 TABLE 4.7: HUMAN BIOACCESSIBLE FRACTION OF PB AND SB IN LEAVES.............................................................................. 139 TABLE 4.8: SOIL BIOACCESSIBLE FRACTION OF PB AND SB ................................................................................................ 140 TABLE 4.9: TWO TAILS PEARSON CORRELATION MATRIX.................................................................................................. 141 TABLE 5.1: TRANSLOCATION FACTOR (TF) AND BIOACCUMULATION FACTOR (BF) IN DIFFERENT EDIBLE PLANTS.......................... 151 TABLE 5.2: BIOACCESSIBLE FRACTION OF SB IN EDIBLE ORGANS………………………………………………………………………………………152 TABLE 6.1: PEA PLANT AERIAL BIOMASS (G) .................................................................................................................. 163 TABLE 6.2: VARIATIONS OF THE IBRV2 INDEX IN CONTROL, SCG, AND SCGC TREATMENTS .................................................... 163

1

Chapter 1. SCIENTIFIC CONTEXT: HOW AND WHY STUDY INORGANIC POLLUTION IN URBAN SOILS?

To follow the charter of thesis from the University Paul Sabatier of Toulouse, the following chapter is preceded by a summarized French version, with references to the figures and tables present in the English version. For the whole introduction, you can skip to page 9. You will find here summarized information as a frame of the following investigation work. Why do we study heavy metal at the soil-microorganism-plant interface? Which are the risks for urban and peri-urban gardeners? How can one manage a contaminated soil when the will is to use it for food production? These are some of the questions raised here. At the end of each part, you will find a If you want more! section, with specific literature to go further in one or another field of interest as it is not exhaustive. As antimony has been much less studied, a focus has been added for this element about its bioavailability to edible plants (Section 1.3).

Heavy metal group, Pierart, 2016

What do you want? Heavy metal, heavy metal! Judas Priest, Heavy Metal, Ram It Down

Chapter 1 – Scientific context

2

1.1. Introduction générale Métaux et métalloïdes, origines, flux et dangers Tous les éléments traces métalliques et métalloïdes (ETM) sont naturellement présents dans la croûte continentale en proportions généralement faibles mais variables (Gao et al., 1998). La seule présence d'un ETM ne suffit pas à définir une zone comme contaminée. L'origine et la quantité du métal doivent être prises en compte, tout comme sa dangerosité. Les cycles biogéochimiques des ETM sont influencés, de façon rapide (Kim et al., 2014), par les rejets dans l'environnement d’origines naturelles (activité volcanique, érosion hydrique et éolienne du sol) et anthropique depuis la révolution industrielle (Catinon et al., 2011), (Figure 1.1). Les substances chimiques (de synthèse ou d’origine naturelle) accompagnent nos sociétés humaines depuis des siècles avec leurs avantages (fabrication d’outils, de médicaments, etc.) et leurs inconvénients (intoxication au plomb, effets secondaires graves de certains médicaments, etc.). Ces dernières années, la réglementation concernant la production, l’utilisation et les émissions dans l’environnement des substances chimiques s’est renforcée (règlement européen REACH1 et règlement Français des ICPE2 par exemple). Le « Global Harmonized System » s’est également mis en place à l’échelle de la planète afin d’assurer la même information « environnement-santé » partout dans le monde pour une substance chimique donnée. On peut donc considérer que des progrès ont été faits en termes de prise de conscience sur les risques potentiels liés à l’utilisation des substances chimiques. Malgré tout, les méthodes de mesure de plus en plus sensibles permettent de détecter certaines pollutions historiques ainsi que des nouveaux contaminants, qualifiés alors d'émergents. Deux métaux lourds: cadmium (Cd) et plomb (Pb) et un métalloïde: l’antimoine (Sb) ont été particulièrement investigués. Le cadmium et le plomb ont été sélectionnés pour leur présence récurrente en tant que contaminants environnementaux / alimentaires, en raison de leur utilisation historique (et actuelle) dans de nombreux processus industriels. Le cadmium a augmenté de façon considérable dans notre alimentation ces 10 dernières années (+400%) tandis que les teneurs en Pb tendent à diminuer légèrement mais restent encore préoccupantes comme le montre l’évolution de leurs teneurs dans les aliments mise en évidence par l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) dans deux évaluations totales de l’alimentation sur le territoire

1

REACH - Registration, Evaluation, Authorization and restriction of CHemicals

2

ICPE - Installations Classées pour la Protection de l'Environnement

Chapter 1 – Scientific context

3 Français. Les sources de Cd et Pb et leurs proportions ont été bien documentées, celles de Sb beaucoup moins (Figure 1.2). De façon générale, leur utilisation dans différents procédés industriels (batterie, retardateurs de flamme, pesticides et engrais) constitue la source majoritaire de ces éléments dans l’environnement. Dans les sols français, les teneurs en Cd et Pb ont été mesurées dans les horizons de surface par le Gis Sol (Groupement d’intérêt scientifique sol) au cours de la dernière décennie au travers du programme RMQS (Réseau de Mesure de la Qualité des Sols) (Figure 1.3). Cette étude n’a cependant pas porté sur l’antimoine. Des teneurs légales dans les aliments, les sols (dans le cadre de l’épandage de boues de stations d’épuration) et les eaux existent pour Cd et Pb (résumés dans le Tableau 1.1 pour Pb). Pour Sb, en dépit de son classement comme élément à haute toxicité, il n’existe pas de norme fixant la concentration limite admise dans l’alimentation. L’antimoine a été étudié ici en raison de risques émergents liés à son utilisation. En effet, ce dernier est de plus en plus détecté en zones urbaines et péri-urbaines ainsi que dans l’alimentation comme indiqué par l’évolution de ses teneurs entre les deux évaluations totales de l’alimentation réalisées par l’ANSES. Or, on manque encore d'information sur son comportement le long de la chaîne alimentaire. Le rôle des micro-organismes dans le transfert de ces polluants inorganiques entre le sol et les plantes est l'un des thèmes centraux de cette étude. La littérature traitant ce sujet existe pour Cd et Pb, mais les liens éventuels entre ces micro-organismes et la bioaccessibilité humaine de ces éléments n’avaient pas été étudiés. Les études et synthèses bibliographiques traitant du comportant de ces éléments à l’interface sol-plante sont nombreuses, mais les interactions avec les champignons mycorhiziens à arbuscules et les bioamendements tel que le lombricompost sont moins étudiées, particulièrement dans le cas de l’antimoine (Pierart et al., 2015, CHAPITRE 4). Gestion raisonnée des pollutions métalliques Alors que les surfaces des sols contaminés par des ETM persistants augmentent depuis la révolution industrielle, la réhabilitation des sols à usage résidentiel et agricole est désormais un défi environnemental et sanitaire majeur (Wong et al., 2006). Les stratégies d'assainissement sont nombreuses (Khan et al., 2004), comme résumé dans la Figure 1.6. Ces techniques sont principalement divisées en deux groupes selon que la contamination ciblée soit traitée sur place (in situ) ou à l'extérieur de la zone, dans un lieu spécialisé (ex situ). Les traitements ex situ, du fait de leur rapidité, sont particulièrement intéressants pour les lieux d'intérêt économique élevé (urbanisation, etc…). Cependant, ils passent par une phase

Chapter 1 – Scientific context

4 d'excavation des sols qui affecte de façon importante les écosystèmes locaux. Enfin, leur coût est généralement trop élevé pour être appliqué à de grandes surfaces. Les solutions in situ, comme la phytoremédiation ou la phytostabilisation, sont en principe moins chères et certainement meilleures d'un point de vue environnemental. Cependant, elles restent moins efficaces pour les taux élevés de contamination. L'utilisation de produits chimiques donne des résultats rapides, mais impacte aussi les écosystèmes, tandis que les solutions biologiques perturbent beaucoup moins l'environnement, mais requièrent un temps de dépollution beaucoup plus long. Enfin, pour de nombreux sites, une approche complémentaire est généralement développée sur la base d'un examen préalable des zones en fonction du degré de pollution. Dans les zones d'agriculture urbaine et péri-urbaine, la volonté principale des utilisateurs est de continuer à cultiver leurs terres, élément clé à considérer lors du choix du plan de gestion à mettre en place (Dumat et al., 2015). Par conséquent, la recherche et le développement de solutions (1) non-destructives (2) économiquement viables et (3) si possible, permettant l’accès au site en cours de traitement, fait partie des objectifs de la présente étude. Agriculture urbaine et biofertilisants/bioamendements L'agriculture urbaine et péri-urbaine (AUP) est l'acte de produire des aliments à l'intérieur ou à proximité immédiate des villes. Toutefois, l'AUP couvre un objectif plus large et son développement révèle également un rôle crucial dans le développement écologique, social et individuel (McClintock, 2010). Pour résumer brièvement, l'agriculture urbaine a commencé au 19ème siècle avec la révolution industrielle et l'exode rural qu’elle engendra (Boulianne, 2001). En effet, à cette époque les villes ont prévu des espaces arables pour les travailleurs, leur permettant de cultiver leur propre nourriture avec l'objectif de maintenir et de développer la puissance de travail et la productivité. Puis, au cours des deux guerres mondiales, et entre ces périodes, leur rôle était plus nettement alimentaire. Le boom économique qui a eu lieu au début des années 70 a transformé les habitudes de consommation en raison du développement de l'agriculture industrialisée telle qu’on la connait aujourd’hui. Dès lors, l’agriculture urbaine est devenue davantage récréative et paysagère, et a été partiellement délaissée par les citoyens. Cette période a perduré jusqu'à la dernière décennie, qui a marqué une rupture dans la perception de l'agriculture urbaine: actuellement, elle semble susciter l'intérêt en raison de la crise économique et plus profondément du rejet des modèles de développement économiques et urbains. L’agriculture urbaine est aujourd’hui un thème complexe et diversifié, un mot-clé regroupant de nombreux types de jardiniers et autant de lieux aux objectifs différents (production, lien social, loisirs, ...). Aujourd’hui, les projets d'agriculture urbaine et la littérature associée germent au moins aussi vite que les cultures elles-mêmes.

Chapter 1 – Scientific context

5 En France par exemple, l'agence nationale de la recherche a financé un programme de recherche « villes durables » de trois ans appelé JASSUR (ANR-12-VBDU-0011), comme acronyme de Jardins ASSociatifs URbains. L'objectif principal était d'y étudier les services fournis par les jardins urbains dans le développement durable des villes et également d’analyser les pollutions éventuelles ainsi que leur gestion. Le présent travail s’est déroulé dans le cadre de ce projet national et a été financé par l’ANR JASSUR. Les zones urbaines et péri-urbaines sont connues pour être des lieux souvent contaminés en raison de nombreuses activités anthropiques historiques ou plus récentes (Werkenthin et al., 2014). Par ailleurs, les citoyens sont généralement mal informés sur les potentiels risques de cultiver leur propre nourriture liés à la qualité des milieux (sols, eaux, air) et/ou la qualité des supports de cultures, amendements et fertilisants utilisés (Dumat et al., 2015). En effet, à l’échelle globale la qualité de l'air, de l'eau, du sol et de divers amendements organiques diminue en raison d’une augmentation significative des teneurs en contaminants organiques et inorganiques (Borrego et al., 2006). Les sols urbains sont soumis à une telle pression économique que les espaces dédiés aux projets d’agriculture urbaine sont souvent implantés sur d’anciennes friches industrielles, des sols très anthropisés, ou des lieux à proximité des industries et des axes de communication où aucun projet immobilier ne pourrait naitre. Par conséquent, la question de la qualité du sol, de l'eau et de l'air est essentielle à traiter de façon collective et transparente afin que les projets d’AUP jouent pleinement leurs rôles de vecteurs de santé et bien-être des populations et de réduction des inégalités écologiques. Par ailleurs, les agriculteurs et jardiniers urbains par leurs pratiques peuvent également améliorer ou dégrader la qualité de leurs productions et de leurs parcelles. En effet, la qualité et les quantités des divers fertilisants, amendements et traitements utilisés soulèvent des questions comme par exemple des problèmes de sur-fertilisation ou d’emploi de pesticides aux conséquences toxiques (pour lesquels l’agriculture bio n’est pas épargnée, du fait de l’écotoxicité du cuivre présent dans certaines substances autorisées par exemple). --Afin de recycler les déchets organiques et de développer des pratiques culturales biologiques, l'utilisation de fertilisants et amendements organiques ‘faits maison’ ou non tels que les microorganismes ou le compost est très courante en agriculture urbaine. Cependant, peu de littérature a été publiée concernant leur influence sur la mobilité des ETM à l'interface sol-plante, ce qui est l'objectif principal de la présente thèse, en particulier dans le cas de l’antimoine (polluant émergeant) mais aussi du plomb et du cadmium (très couramment observés en zones urbaines dans le monde). ---

Chapter 1 – Scientific context

6 Les champignons mycorhiziens à arbuscules (AMF) sont des microorganismes symbiotiques de plus de 94% des plantes à fleurs (Brundrett, 2009, Figure 1.8). Ils sont naturellement présents dans les sols et sont d’orse et déjà vendus comme biofertilisants du fait de leur capacité à solubiliser le phosphore, élément majeur de la croissance des plantes. Cependant, plusieurs études tendent à montrer leur rôle dans le transfert des métaux lourds des sols vers les plantes. Le compost peut être produit à partir de très nombreux résidus organiques et selon des procédés variables, ce qui modifie ses caractéristiques biophysicochimiques. Or, selon Moreno Flores (2007), l’utilisation de lombricompost en agriculture urbaine se développe, alors que ces matières organiques sont connues pour séquestrer/relarguer les métaux lourds en fonction de l’acidité du sol, du fait des liaisons ioniques en jeu (Gerritse and van Driel, 1984; Sauvé et al., 2000). Or, Les AMF sont connus pour affecter le pH du sol rhizosphérique (Hu et al., 2013), ce qui pourrait affecter la mobilité des ETM liés à la matière organique. Ces interactions sont donc au cœur de la présente étude. Enfin, le biochar (Figure 1.10) est actuellement très étudié pour ses nombreuses qualités physicochimiques en tant qu’amendement organique (Lehmann and Joseph, 2015). Dans le cas des sols contaminés en ETM, son utilisation a également révélé un bon potentiel de fixation de ces polluants (Paz-Ferreiro et al., 2014), dont l’efficacité varie principalement selon le processus de préparation (température, matériaux initiaux) (Uchimiya et al., 2011). C’est pourquoi nous nous sommes intéressés au rôle d’un biochar préparé à base de marc de café dans le transfert de l’antimoine vers les plantes comestibles. Gestion du risque sanitaire La teneur totale en contaminants dans les sols cultivés et les plantes n’est pas nécessairement un bon indicateur de leur toxicité. En effet, au cours de la digestion seule une fraction (dite bioaccessible) de ces contaminants est extraite et mise en solution dans le tractus digestif (Pascaud et al., 2014; Xiong et al., 2014a, 2014b). Cette fraction bioaccessible est ensuite de nouveau filtrée par la barrière intestinale, qui limite le passage de ces éléments vers le système sanguin (Figure 1.11). Pour étudier ces phénomènes en laboratoire (sans avoir à pratiquer des analyses sur des êtres vivants), des solutions d’extraction de synthèse ont été développées, (Denys et al., 2009) afin de simuler les processus de digestion, ainsi que les temps et températures physiologiques adaptés. Cette méthode a été standardisée et validée in vivo par le groupe de recherche européen sur la bioaccessibilité (BARGE) sous le nom d’Unified BARGE Method (UBM) (Foucault et al., 2013).

Chapter 1 – Scientific context

7 Qu’étudie-t-on et comment ? Les objectifs généraux de cette thèse étaient les suivants : 

Évaluer la phytodisponibilité et la bioaccessibilité des ETM dont l’origine de la contamination diffère (géogénique vs anthropique), sur les plantes comestibles.

Étudier l'impact des champignons mycorhiziens à arbuscules et de la matière organique sur le transfert des ETM du sol vers les plantes (transfert, translocation et compartimentation).

Évaluer l'influence de la communauté microbienne sur le devenir des ETM à l'interface sol-microorganisme-plante.

Étudier l'influence de ces paramètres physico-chimiques et biologiques sur la bioaccessibilité humaine des ETM dans les sols et les organes comestibles des plantes, afin d’en évaluer le risque sanitaire.

La complexité des mécanismes impliqués dans le devenir des métalloïdes à l'interface solmicroorganisme-plante (s-μ-p) met en évidence la nécessité de mieux comprendre les rôles de chacun à travers une approche multidisciplinaire et multi-échelles basée sur la complémentarité

des

approches

de

biogéochimie,

agronomie,

génomique

et

(éco)toxicologie. Ce travail fait lien avec l'approche de (1) Leveque, (2014) sur l'écotoxicologie et la biosurveillance des sols contaminés par des ETM et (2) Xiong, (2015) sur le devenir de la pollution atmosphérique en ETM à l'interface air-plante. Pour étudier le transfert des ETM à l’interface s-µ-p ainsi que l'impact des micro-organismes et de la matière organique, nous avons développé plusieurs expériences organisées autour d’un gradient de complexité (Figure 1.12). En effet, les systèmes les plus simples produisent des résultats plus fondamentaux, sans beaucoup d'interactions entre paramètres, mais leur réalité sur le terrain nécessite d’être vérifiée. En outre, les essais sur sol réels (et non substrats) tentent d'aborder plus précisément la réalité du terrain, avec toutes les interactions qui peuvent s’y produire. Cependant, ces résultats sont généralement plus complexes à interpréter, même si le degré de confiance accordé est considéré comme supérieur.

Chapter 1 – Scientific context

8 Le présent manuscrit est organisé de la façon suivante : Le CHAPITRE 1 est une introduction contextuelle, recueil d’informations essentielles sur le thème scientifique traité dans cette thèse. Un manque de littérature sur la biodisponibilité de Sb dans les plantes comestibles et le rôle des AMF dans son transfert a été mis en évidence ; par conséquent, un focus traite ce sujet au travers d’un article publié, intitulé ‘’Antimony bioavailability: knowledge and research perspectives for sustainable agriculture’’ en seconde partie de ce premier chapitre. Ensuite, l’ensemble des méthodes et outils utilisés sont détaillés au CHAPITRE 2. Le manuscrit étant organisé comme une séquence cohérente de publications, certaines méthodes apparaîtront également dans les chapitres suivants, mais sous une forme condensée. Les principaux résultats sur le devenir du cadmium à l'interface s-μ-p sous différents traitements (bioaugmentation avec AMF, lombricompost) sur deux sols péri-urbains aux caractéristiques et histoires contrastées sont décrits au CHAPITRE 3. Celui-ci est présenté sous forme d’un article soumis, intitulé ‘’How do soil biofertilizers

and

organic

amendments

influence

Cd

phytoavailability and

human

bioaccessibility?’’. . La même expérience a également été utilisée pour étudier le devenir de Sb et Pb à l'interface s-μ-p, avec une approche plus détaillée de microscopie et d’analyse des communautés fongiques (CHAPITRE 4, un article en phase finale de rédaction avant soumission intitulé ‘’Pb and Sb accumulation influenced by arbuscular mycorrhizal fungi community and organic matter in a crop rotation Lactuca sativa L. –> Allium porrum L.’’). La complexité des systèmes a rendu l’interprétation délicate. Par conséquent, une approche expérimentale simplifiée traitant du rôle des AMF dans le transfert de Sb vers des plantes comestibles en hydroponie a été développée. Les résultats sont développés dans le CHAPITRE 5. Jusqu'à présent, l'impact de Sb sur l'activité enzymatique du sol (exsudats racinaires, microbiens et activité microbienne interne) en relation avec l'addition de biochar n'a pas été décrit à ce jour. C’est pourquoi nous avons abordé ces mécanismes dans le CHAPITRE 6, au travers de l'étude de l'effet du biochar de marc de café sur le transfert solplante de Sb. Tous ces résultats et questionnements sont ensuite discutés et mis en perspectives dans le CHAPITRE 7 avant une conclusion finale (CHAPITRE 8).

Chapter 1 – Scientific context

9

1.2. Metal(loid) soil contamination and pollution 1.2.1. Terminology and definition, what are we talking about? All of the trace metals and metalloids (TM) occur naturally in the continental crust in small but variable proportions (Gao et al., 1998). The only presence of an element isn’t sufficient to classify these areas as ‘contaminated’. The origin and quantity of the metal need to be taken into account to define whether or not it is a contaminant. According to the FAO, there is a difference to be made between contamination and pollution. Indeed, “Pollution (is) the introduction by man, directly or indirectly, of substances or energy into the (…) environment (…) resulting in such deleterious effects as harm to living resources, hazards to human health. Contamination, on the other hand, is the presence of elevated concentrations of substances in the environment above the natural background level for the area and for the organism”3. For instance, a positive geochemical anomaly means naturally high amount of metal in a soil, such as for urban gardens in Nantes (France) which are enriched with lead from the mother rock. However, this semantic distinction is rarely done because terms are inverted and the substance origin isn’t always easy to trace.

1.2.2. Why Cadmium, Lead and Antimony need to be studied in urban soils? Among the whole periodic table, we focused on two heavy metal: cadmium (Cd) and lead (Pb) and one metalloid: antimony (Sb). These elements were studied because their concentration in food was shown to increase between two recent studies performed by the ANSES in France (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail). Indeed, it showed that Cd increased up to 400%, Pb decreased a little but its concentrations remained of concern and Sb content began to increase due to its emerging use. Indeed, the latter is being more and more detected in urban and peri-urban areas while a critical lack of information on its behavior along food chain exists. The role of microorganisms in the transfer of these inorganic pollutants between soil and plants is one of the central themes of our study. Literature dealing with this topic exist for Cd and Pb, but nothing about the eventual links between these microorganisms and TM human bioaccessibility. Moreover, very few data has been published for Sb, which is why a part of this thesis was focused on a review of Sb biogeochemistry and bioavailability (CHAPTER 1 – Section 1.3) (Pierart et al., 2015).

3

http://www.fao.org/docrep/x5624e/x5624e04.htm#1.1 contamination or pollution

Chapter 1 – Scientific context

10

The biogeochemical cycles of TM generate releases in the environment which can be both natural (volcanic activity, hydric and aeolian soil erosion) and anthropic (industrial activities), the latter being generally the most important (Catinon et al., 2011) and the fastest dispersion pathway (Kim et al., 2014) (Figure 1.1).

Figure 1.1: Biogeochemical cycle of TM, adapted from Tremel & Feix, 2005

Sources of Cd and Pb have been estimated in France. But, as such detailed information does not exist for Sb (Figure 1.2), it is estimated that its use in fire retardant, battery manufacture, brake linings and mining processes are the major Sb sources. However, Sb can also reach agricultural soils through lead arsenate pesticides application, since it is present as a contaminant in these metal ores (Wagner et al., 2003).

Figure 1.2: Proportion of major contamination sources for TM entrance in arable lands. Adapted from Repères. Sols et environnement, Chiffres Clés, 2015.

Chapter 1 – Scientific context

11 Facing these contaminations, worldwide regulation is highly heterogeneous, with loose regulation in some countries while in Europe for example, the release in the environment of major TM contaminant is being controlled (Xiong, 2015). Since 2006, the European REACH regulation (Registration, Evaluation, Authorization and restriction of CHemicals) classified some of them (Cd, Pb, Ni, As, Hg) as Substances of Very High Concern requiring a life cycle monitoring by industrials and communication towards citizens (EC 1907/20064).

1.2.3. Cadmium: a highly mobile carcinogenic element An extensive review of Cd behavior and toxicity at the soil-plant interface has been published by Shahid et al (Shahid et al., 2016); here are some summarized data showing the needs to study it: cadmium is naturally present in small quantity in the continental crust, being the 65th most abundant element within the periodic table. Its industrial exploitation always comes as a by-product, mostly in Zinc refining process. Figure 1.3: Cadmium content in French soils. In mg.kg-1 at 0-30cm depth, between 2000 and 2009. Adapted from foot note 5

Its concentration in natural soil ranges between 0.1 and 1.1 mg.kg-1 soil (Shahid et al., 2016).

In European agricultural soils, it has been estimated to range between 0.06 and 0.6 ppm (Salminen et al., 2005). However, in the case of soil developed above sedimentary rocks or subjected to recurrent Cd-phosphate fertilizers (Schroeder and Balassa, 1963) and sewage sludge amendment, Cd content can easily reach more than 15 mg.kg-1. In French soils, Cd content has been monitored on surface horizons by the Gis Sol organism5 during the last decade through the RMQS 6 program with a concentration range of 0.02 to 5.5 mg.kg-1 (Figure 1.3). Cd causes strong deleterious effects on living organisms such as kidney disorder and increased probability of bone fractures (Järup, 2003). Since 1993, the CIRC (French International Centre for Cancer Investigation) classified Cd as a group 1 harmful element (carcinogenic for human being). Cd hazard is of major concern because of its relatively high mobility in soil and water systems (Beesley et al., 2010). Indeed, its phytoavailability is high

4

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410

5

http://www.statistiques.developpement-durable.gouv.fr/lessentiel/ar/272/1122/contamination-sols-elements-traces.html Réseau de Mesure de la Qualité des Sols – connected to European ENVASSO (Environmental Assessment of Soil for Monitoring) 6

Chapter 1 – Scientific context

12 with a relatively weak bondage to clays, but strong affinity to OM (Prokop et al., 2003). For non-smoking people, the major source of Cd exposure has been estimated to be food diet (90%) (EFSA, 2009). For example, horticultural crops such as lettuce can present a high Cd accumulation in edible parts when cultivated both in contaminated soil and in spiking experiment (Peris et al., 2007; Zorrig and El Khouni, 2013). Cd is also found in cereals but in lower concentrations (Denaix et al., 2010). Cd concentration has been limited in drinking water to 5 µg.L-1 (INERIS, 2007), in agricultural soil (where sewage sludge are willing to be spread) to 2 mg.kg-1 and in leafy and stem/root vegetables to 0.2 and 0.1 mg.kg-1 fresh weight by the European directive EC1881/2006 because of its toxicity. But, this threshold might be lowered in the upcoming years according to recent discussions from the European commission (Nguyen et al., 2013).

1.2.4. Lead: a major contaminant widely present in urban soils Lead (Pb) is a post-transition metal belonging to the carbon group for which four stable isotopes are found in the environment. Although Pb can occur naturally in the environment through alteration of a rich mother rock, its presence in the environment

is

predominantly

due

to

anthropogenic activities such as mining, smelting, battery manufacture and past (but intense) use of leaded petrol until 2000 (Lim et al., 2013). Pb content in soil is highly variable, but it is Figure 1.4: Lead content in soil. In mg.kg-1 at 030cm depth, between 2000 and 2009. Adapted from: see foot note 4

present in almost all compartments of the biosphere: in a natural and undisturbed soil, Pb content ranges between 2 and 60 mg.kg-1

(Pettinelli, n.d.). However, local geochemical anomaly and industrial processes can increase its presence to more than 1 000 mgPb.kg-1. In France, the RMQS estimated that Pb content in soil ranged between 3 and 624 mgPb.kg-1 (Figure 1.4), but intense local contamination (~ 40 000mg.kg-1) exists as shown for instance by Leveque in 2014 (Leveque, 2014). Indeed, the RMQS specification requires the sampling areas either to be a natural soil or arable lands (i.e. it excludes anthropic soils such as industrial areas which are usually the more contaminated).

Chapter 1 – Scientific context

13 Lead is one of the most measured contaminant in the environment because of numerous industrial activities. As for Cd, ingestion might be the principal exposure way for Pb accumulation in living organisms, followed by dust/particles inhalation. Lead intoxication is usually called saturnism with nerve, brain and kidney diseases (Navas-Acien et al., 2009). Actually, it is classified 2B by the CIRC (potentially carcinogenic for human beings). Lead presents a lower mobility than Cd at the soil-water interface and generally binds more strongly to mineral surfaces (such as phosphates) than to soil organic matters (Quenea et al., 2009). Its speciation and mobility depend on iron and aluminum oxi-hydroxide contents (Dumat et al., 2001) and as for most of trace elements, pH is one of the major factors of influence in soil (Cecchi, 2008; Leveque, 2014). Hence, plant and microorganism exudates can affect Pb mobility and phytoavailability (Khan, 2005; Lin et al., 2004). Lead accumulation by plant can be high, with no general pattern: some plants such as Allium cepa L. accumulate in root (Wierzbicka, 1987) while other translocate Pb to their leaves, such as maize (Huang and Cunningham, 1996). These characteristics, linked with Pb elevated toxicity, led to set up legal thresholds for Pb in food products and drinking water (Table 1.1). For soils, in France, only sewage sludge inputs present legal threshold for cultivated soils, but due to the bioavailability concept, no legal threshold values were fixed for the other contexts. Table 1.1: Legal threshold of Pb in drinking water, soil, and aliments. Adapted from Cecchi (2008)

Maximal threshold

Law (Source) Drinking water (µg.L-1) Decree 2003-461 & 2003-462 (2003) EU Directive 98/83/CE (1998) Directive drinking water quality (1996) US EPA

AFNOR NFU 44-041 CE/466/2001

France European Union World health Organization Soil (mg.kg-1)

Play areas Other France, agricultural soil (when sewage sludges are willing to be spread)

Aliments (mg.kg-1 fresh weight)

Fruit juice Oil & Fat, Vegetables (except leafy vegetables, Brassicaceae, aromatics, mushroom), Fruits (except small fruits & small berries) Wines, small fruits & small berries, cereals, leguminous crops and vegetables leafy vegetables, Brassicaceae, aromatics, mushroom

Chapter 1 – Scientific context

10 400 1200 100 0.05 0.1 0.2 0.3

14

1.2.5. Antimony: emerging metalloid; emerging risks? From the Latin Stibnium, Antimony (Sb) is a metalloid from the nitrogen group. It has been given such a name because it can only be found combined with other elements (Anti-monos = opposite to solitude). It is mostly present in two stable isotopic forms

Sb (57.36%) and

121

Sb

123

(42.64%). Antimony’s concentration in earth crust has been estimated to range between 0.20.3 mg.kg-1. Its background concentrations in Figure 1.5: Antimony, an alloy in ammunitions, http://www.lab-initio.com/

uncontaminated soil vary between 90%) of three macro-fungi (Agaricus campestris, Amanita muscaria, and Trametes gibbosa) from Sb-contaminated water has also been reported, but further investigation on metal-binding mechanisms is still needed [137]. Concerning the relationship between mycorrhizal fungi and Sb in soils, one study has been reported on ectomycorrhizal fungi [101]. These organisms, as well as endomycorrhizal fungi, are already known as metal(loid) hyperaccumulators [138]. In their study, the authors sampled fungi on tailing piles and slag dumps (old As/Sb mining sites), and found no major differences for Sb concentration between ectomycorrhizal and saprobic fungi. Interestingly, among all their samples Sb content in the soil was higher than in fruit bodies, which could indicate that mycorrhizal fungi play a barrier role against this metalloid. However, the case of some ectomycorrhizal fungi (Chalciporus piperatus and various Suillus) able to accumulate Sb up to 103 mg kg.1 is also mentioned. This suggests that these genera possess a specific biological metabolism to mobilize and concentrate Sb from the soil, while Sb is generally present in species with poor solubility (cf. §2.2, [57]). How then do some mycorrhizal fungi influence Sb speciation in the soil compartment? What about the reactivity of these newly formed Sb species under the influence of mycorrhizal fungi? Other recent studies found (CH3 )3 Sb and another unidentified Sb species in some herbaceous plants [51], suggesting the role of the microbial community in the synthesis and transfer of these compounds. As stated earlier, it is well-documented that herbaceous plants generally develop more endomycorrhizal symbioses (such as AMF), suggesting the role of AMF in the biosynthesis and transfer

Chapter 1 – Scientific context

27 228

A. Pierart et al. / Journal of Hazardous Materials 289 (2015) 219–234

Fig. 1. Mycorrhizal role in Antimony (Sb) transfer from soil to plants. [?] Represents the actual mechanisms to be elucidated. Sb regroups the different Sb oxidative states and species.

of (CH3 )3 Sb to herbaceous plants. Fig. 1 presents the current state of knowledge of the possible ways for Sb to gain entry from soil to plants, either when associated with mycorrhizal fungi or without these organisms. ‘Sb’ refers without distinction to the various Sb species which have been found in soil and soil water, because not enough data exist about specific pathways for any Sb species. The different possible fluxes of Sb from soil to both plants and fungi are represented by arrows. As shown in Fig. 1, and summarized in this review, portions of these mechanisms are already known [39,88], but others have not yet been described (mostly the entirely of the fungal pathway). Nothing is known about how mycorrhizal fungi either absorb, adsorb and/or transform Sb at the soil–fungal–plant interface. 4.3. Biofertilizers in agriculture With the development of biological agriculture, arbuscular mycorrhizal fungi are now produced and sold in almost every garden center, both for agriculture and casual gardeners, as biofertilizers [139]. As mycorrhizal symbiosis is known to affect different physiological parameters, such as stomatal conductance and fruit development [140–143], it might participate in increasing the entry of metal(loid)s through stomata (i.e., leaves) and fruits. Consequently, in some cases, these biofertilizers could also be factors in the increase of metal(loid) uptake by plants [144]. Therefore, research needs to be conducted, to determine if most fungi able to methylate As have the same capability with regard to Sb, especially in the case of AMF, which could be used as a barrier between edible plants and soil on Sb-contaminated soils. Such results would also allow conclusions to be drawn as to whether or not the knowledge we already have about the relationship between AMF and As is transferable to Sb compounds, and to what extent. 4.4. Bioaccumulation by the soil fauna In addition to their key role in soil fertility, earthworms, as the major living organisms in soils, influence metal(loid) behavior in

soil through bioturbation [145]. In the case of Sb, Nannoni et al. [145] concluded that soil ingestion is the predominant means of exposure and absorption (Pearson correlation (PC) between [Sb] in earthworms and Sb extractable fraction = 0.88, p < 0.001). Nevertheless, they also indicated that skin penetration is not negligible (PC = 0.62, p < 0.05). In their experiment, total Sb concentration in earthworms varied from 0.04 to1.1 mg kg−1 (on clean and contaminated soils, respectively). High Sb concentrations could also cause morphological abnormalities and low activity in Perionyx excavates [96]. Such inhibitory effects on earthworms might cause a loss of fertility. In the case of Sb, the BAF is very low, indicating that, for earthworms, the total Sb concentration in the soil is not a good predictor of their possible contamination, while the extractable fraction seems to fit this role better. It also indicates that these species do not accumulate Sb intensively from the environment, so that Sb will not spread and accumulate through food webs via these organisms. Moreover, as shown for other metal(loid)s, such as Pb, Cu, Cd, Zn, Cr, Co, and Ni [18,52], earthworms can modify metal bioavailability in soils. For example, earthworm activity on a contaminated soil led to a 46% increase in Cd and Pb in lettuce leaves, owing to improved soil–plant transfer [41]. As earthworms are mainly interested in soil organic matter, the same authors also discussed Sb–soil organic matter interactions. Eisenia fetida has also been shown to biotransform As without excreting it after exposure, until its death [146]. This led to a decline in the As concentration in the soil during this period, but no data was given about As speciation or transfer when these organisms die and decompose in the soil. Such effects have not yet been demonstrated for Sb. Fig. 2 represents the actual state of knowledge about Sb behavior in soil–earthworm systems with excreted castings. It shows that such organisms can absorb Sb and further change its bioavailability, but the Sb species involved have not yet been clearly identified. Typically, the bioaccumulation of Sb by soil microfauna varies with their habitat and species type. Antimony concentrations in terrestrial invertebrates (30.4 mg kg−1 dry wt.) are generally higher than those in aquatic invertebrates (5.2 mg kg−1 dry wt.) and

Chapter 1 – Scientific context

28 A. Pierart et al. / Journal of Hazardous Materials 289 (2015) 219–234

Fig. 2. Antimony bioaccumulation in earthworms.

229

Original earthworm drawing (www.onf.fr). BAFSb = bioaccumulation factor of Sb.

amphibians (2.3 mg kg−1 dry wt.) [147]. Some terrestrial invertebrate such as earthworms have already been shown to accumulate Sb [54]. Such disparity could be explained by differences in Sb compartmentation (in particular, soil organic matter influence) or speciation and in diet of these living organisms (soil consumption, water filtration, etc.). The same authors [147] also reported high Sb concentrations in Acrida chinensis and Pheretima aspergillum: 17.3 and 43.6 mg kg−1 , respectively, within 1 km of an Sb mining area. Pauget et al. [148] noted the high availability of Sb to snails, at three industrially impacted sites in northern France. They studied Sb accumulation kinetics from the soil into these organisms, and showed that CaCl2 extract concentrations were the best predictors of Sb bioaccumulation. As noted earlier, organic matter (OM) participates in Sb availability, and the relatively high level of OM in their study area (up to 10%) could partially explain such results. Up to the present, there is no data available concerning Sb accumulation in other living macro/meso-organisms in the soil compartment. It is, therefore, difficult to precisely identify the possible pathway of Sb through the food chain. 5. Human health risks assessment People working with Sb compounds are subject to Sb inhalation, mostly antimony trioxide. For the rest of the population, food represents the predominant source of Sb exposure. Its absorption through the digestive tract has been estimated between 5 and 20% of the total Sb content ingested [149]. In 1992, urban dwellers were exposed to about 60–460 ng day−1 through inhalation [150]. Nowadays, this value has certainly increased with the increase of Sb uses (since 1992) around the world. 5.1. Food-chain biomagnification Antimony biomagnification has not been investigated much as yet, but some studies have intended to evaluate this parameter [151,152]. However, these studies did not discover any evidence of Sb accumulation across the food chain, but their intention was not necessarily to assess trophic linkage. Therefore, this conclusion is not guaranteed. In any case, biomagnification only considers the

xenobiotic accumulation in an organism through its daily alimentation [153]. For example, as shown earlier (cf. §4.2), some fungi have been identified as Sb hyperaccumulators [101], with concentration exceeding 1400 mg kg−1 in the fruiting body of C. piperatus. Consequently, they can become Sb sources in the food web, through slugs, then ducks or chickens, and then humans (or directly to human beings in the case of mushroom consumption). Nevertheless, these organisms are more sensitive to soil contamination than aerial deposition because of the short fruiting period (10–14 day) in which they could accumulate metalloids from dusts. However, it would be necessary to consider other sources of Sb exposure (inhalation, skin contact, etc.), and to focus not only on the biomagnification factor but also on the bioaccumulation factor, which takes into account every kind of exposure. Investigations need to be performed on the transfer of Sb from cereals, such as wheat and maize (which are known to accumulate Sb up to 700 mg kg−1 ), to poultry and livestock, in order to give clues about the risk of transfer through the plant–meat–human food chain. However, little risk of Sb bioaccumulation seems to exist for herbivores, even when their grassland diet suffered major contamination near an Sb smelter [154]. Indeed, rabbits and voles presented relatively high levels of Sb in different organs (0.30 and 0.68 mg–kg−1 DW in voles and rabbit Liver respectively) when they fed in contaminated sites ( poireau), et de l'organe (racine > feuille) pour l'ensemble des ETM étudiés. En outre, la phytoaccumulation des ETM est à la fois spécifique au type d’élément mais aussi à leur origine (anthropique >> géogénique), sauf pour le plomb dont l'accumulation était similaire dans les deux sols étudiés.  Les effets observés de l’ajout d’AMF et OM sur la phytoaccumulation des ETM sont complexes, du fait des interactions présentées ci-dessus. La plupart des résultats ont seulement mis en évidence des tendances ; soulignant la nécessité de renforcer cette étude par un travail de terrain, ou éventuellement avec d’avantage de réplicas afin de renforcer les analyses statistiques. Les résultats les plus pertinents ont montré que l'ajout d’AMF augmente le Cd dans la laitue sur sol sablo-limoneux, mais n'a aucun effet sur sol sableux, ce qui était à l'opposé des résultats obtenus pour le Pb. Par ailleurs, l'ajout d’AMF n'a eu aucun effet sur la phytoaccumulation de Sb. Par contre, l'ajout de lombricompost a eu tendance à diminuer les ETM dans les plantes, mais la plupart des résultats étaient seulement des tendances, à l'exception de la phytoaccumulation du Cd dans le poireau cultivé sur sol sablo-limoneux, qui a diminué de manière significative avec l'ajout de lombricompost.  Pour la première fois, nos résultats montrent que l’apport couplé d’AMF et de lombricompost semble diminuer les ETM dans les parties comestibles (en diminuant le facteur de translocation). Malheureusement, les designs expérimentaux mis en place ne l’ont pas mis en évidence de façon significative, excepté pour le cadmium dans les poireaux cultivés sur sol sableux. En outre, ces variations d'accumulation ont généralement été observées majoritairement dans les racines, ce qui suggère que les ETM étaient soient stockés dans ces organes, soit liés aux parois racinaires et fongiques. Cette hypothèse a été renforcée par des observations en microscopie électronique à transmission de résidus de sol liés à ces structures, même après lavage des racines. Par conséquent, pour réduire l’exposition humaine, peler les légumes racines pourrait être une recommandation appropriée dans le cas de contamination aux ETM plutôt que de simplement les laver.

Chapter 8 – Conclusion and perspectives

196  Nous avons montré que la bioaccessibilité des ETM dans le sol a été fortement influencée par l'origine des contaminants (anthropique > géogénique), et pour la première fois que que l’ajout d’AMF n'a aucun effet sur ces fractions. A l’opposé, le lombricompost a augmenté la bioaccessibilité du Cd dans le sol (mais n'a eu aucun effet évident sur Pb et Sb). Ceci suggère que les ETM récemment libérés dans l’environnement sont d’avantage bioaccessibles lors de la digestion que les contaminants métalliques anciens. Ces différences de bioaccessibilité étaient corrélées à la mobilité des ETM dans le sol et leur solubilité (disponibilité dans la solution du sol), ce qui pourrait indiquer que leur spéciation chimique influence directement leur bioaccessibilité.  Dans nos conditions, nous avons confirmé que la bioaccessibilité des ETM dans les plantes dépend du type d'élément comme suit: Cd (~ 90%) > Pb (~ 60%) >> Sb (~ 20%). L’ajout de lombricompost n'a eu aucun effet sur ces fractions dans les plantes. Pour la première fois, nous rapportons que l’apport d’AMF augmente la bioaccessibilité de Sb. Un effet plante a également été mis en évidence, avec une bioaccessibilité plus élevée dans la laitue que dans le poireau. De plus, l'origine de la contamination a influencé sur sa bioaccessibilité dans les plantes (plus élevée dans les sols présentant une contamination anthropique). Cependant, un effet plante semble aussi intervenir car ces variations ont été mesurées seulement dans la laitue.  En hydroponie, le système a été simplifié afin de limiter les éventuelles interactions avec le sol. Nous avons observé comment la spéciation chimique de Sb a influencé la façon dont le mélange d'espèces fongiques (isolées à partir des sols contaminés précédemment étudiés) pourrait participer à sa phytoaccumulation. Toutefois, la réponse était spécifique de la plante : augmentation de l'accumulation en ETM chez la carotte indépendamment de l'espèce chimique ; diminution chez la laitue avec une influence de la forme chimique de Sb à l'échelle de l'organe (la mycorhization n'a eu aucun effet sur KSb dans les feuilles alors qu'elle a diminué l’accumulation de Sb2O3). Par ailleurs, nous montrons ici pour la première fois que l'ajout d’AMF a augmenté à la fois le facteur de translocation et le facteur de bioaccumulation, excepté dans les laitues traitées avec Sb2O3 dans lesquelles nous avons observé une diminution significative du facteur de translocation. Ces résultats suggèrent une absorption et un stockage sélectifs dépendant de la spéciation chimique des ETM plutôt que seulement leur degré d’oxydation. Des biotransformations dans la plante pourraient également modifier la spéciation des ETM et leur bioaccessibilité.

Chapter 8 – Conclusion and perspectives

197  La diversité des communautés fongiques du sol a joué un rôle clé dans la mobilité des ETM et leur phytoaccumulation décrite précédemment. Cette composition semble dépendre du sol et des plantes (elle peut également varier de façon saisonnière d’après la littérature, ce qui complique encore d’avantage l'ensemble du système). Par ailleurs, des risques ont été mis en évidence quant à l’ajout de lombricompost et la bioaugmentation avec des propagules d’AMF locales. En effet, ces deux pratiques ont diminué la diversité fongique associée aux plantes. Par conséquent, ils doivent être utilisés avec précaution dans le cas de contamination en ETM dans les sols cultivés.  L’influence de Sb sur l'activité microbienne du sol (étudiée grâce à des dosages d’activité enzymatiques) a été forte. En effet, le dopage du sol en Sb a augmenté de façon significative l'indice IBRv2 révélant d'importantes variations d'activités enzymatiques. Cet effet semble dépendre de la concentration en Sb, avec une influence plus élevée à des teneurs faibles en Sb. Ces résultats originaux mettent en évidence l'utilisation potentielle de l'indice IBRv2 dans le développement des valeurs standards de qualité des sols.  Pour la première fois, cette étude montre comment l'utilisation de biochar de marc de café a efficacement atténué la toxicité de Sb par rapport aux traitements SCG (marc de café cru) et sans matière organique. Cependant, certaines enzymes étaient encore affectées par la contamination en Sb (carboxylestérase, uréase et phosphatase acide). Par ailleurs, ce bioamendement a été bien colonisé par les champignons et bactéries du sol, et il a conservé une activité enzymatique microbienne (vivante) après stérilisation. Ces résultats illustrent son potentiel pour la remédiation des sols dégradés, en tant que matériau offrant un abri efficace aux microorganismes du sol tout en étant une source de nutriments favorables à leur développement.

Chapter 8 – Conclusion and perspectives

198 PERSPECTIVES Le présent travail, au travers de ses conclusions, limites et biais, a généré de nombreuses perspectives: Le dispositif expérimental mis en place Tout d'abord, comme il a été discuté au chapitre 7, nous nous sommes concentrés ici sur deux modèles simplifiés (hydroponie et sol réel) dans des expériences en pots. Il serait hautement souhaitable, sinon obligatoire de mettre en place des protocoles similaires en plein champ pour éviter les biais des expérimentations en pot affectant de nombreux paramètres physiologiques tels que la croissance des plantes, des champignons et de la communauté microbienne, et éventuellement le métabolisme des plantes comme l'absorption des ETM par exemple. Cependant, pour évaluer le rôle individuel de chaque acteur, des modèles encore plus simples, tels que les systèmes hairy-root présentés au chapitre 5, sont aussi des outils intéressants. La plante utilisée A plusieurs reprises, nous avons montré un effet plante sur la mobilité et l’accumulation des ETM. Cela pourrait être dû aux espèces utilisées, mais aussi aux cultivars et à la séquence de culture elle-même (laitue  poireau). Pour déterminer l'effet prédominant (s'il y en a un), il pourrait être intéressant de comparer l'ordre inverse avec les mêmes plantes, mais aussi d'autres espèces et cultivars. Cela générerait des données intéressantes à ajouter aux bases de données existantes telles que BAPPET4. Les biofertilisants et bioamendements appliqués Comme cela a été développé dans les chapitres 4 et 7, nous avons montré que la mobilité et la phytoaccumulation observées des ETM sont dépendantes à la fois de la communauté fongique et de l’origine de la matière organique (selon des études antérieures). Par conséquent, des recherches supplémentaires seraient nécessaires pour caractériser les effets des biofertilisants et bioamendements commerciaux les plus couramment utilisés dans les jardins urbains. Cela permettrait d’élaborer des stratégies de gestion raisonnée dans les zones urbaines contaminées et au-delà. De plus, nous nous sommes concentrés ici sur les AMF en tant que principaux acteurs du sol dans les processus biogéochimiques afin de simplifier le système et évalué leur propre rôle. Cependant de nombreuses études montrent que les communautés bactériennes rhizosphériques peuvent influencer la mobilité des ETM et des

4

BAPPET - BAse de données sur les teneurs en Eléments Traces métalliques de Plantes Potagères

Chapter 8 – Conclusion and perspectives

199 éléments nutritifs à l'interface sol-plante. Les nouvelles techniques de séquençage haut débit tels que l’Illumina MiSeq présentent un grand potentiel pour étudier l’ensemble des communautés de micro-organismes dans le sol, avec l'inconvénient toutefois que les bases de données taxonomiques sont encore incomplètes et que l'efficacité de la méthode ellemême semble dépendre des espèces microbiennes étudiées. Utiliser les mathématiques comme un outil d’aide à la décision Même s'il y a encore un long chemin avant d'être en mesure de représenter mathématiquement la complexité de chaque scénario sans travail de terrain et collecte de données préalables, la modélisation de ces processus biologiques présente un intérêt considérable pour limiter les études de terrain coûteuses... Lorsqu’ils seront assez robustes, ces outils pourront être utilisés dans les processus de décision lors du développement de projets d’AUP par exemple. Le biochar, un vaste champ de recherche Les résultats du chapitre 6 ont montré le potentiel du biochar de marc de café comme stimulateur et abri propice aux microorganismes. Ceci ouvre la voie à la recherche de méthodes pour activer ce biochar avec des micro-organismes sélectionnés, capables de solubiliser ou stabiliser les ETM, les pesticides ou d'autres contaminants afin de créer un outil recyclé utilisable dans les processus de phytoremédiation ou phytostabilisation.

--- Le mot de la faim --Finalement, la meilleure des recommandations pourrait être de compléter le conseil santé mangez au moins cinq fruits et légumes par jours … par … d’origines différentes, pour limiter l’ingestion répétée de contaminants.

Chapter 8 – Conclusion and perspectives

201

Bibliography A Abdel Latef, A.A.H., Chaoxing, H., 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 127, 228–233. Abedin, M.J., Cresser, M.S., Meharg, A.A., Feldmann, J., Cotter-Howells, J., 2002. Arsenic accumulation and metabolism in Rice (Oryza sativa L.). Environ. Sci. Technol. 36, 962–968. doi:10.1021/es0101678 Abiala, M.A., Popoola, O.O., Olawuyi, O.J., Oyelude, J.O., Akanmu, A.O., Killani, A.S., Osonubi, O., Odebode, A.C., 2013. Harnessing the Potentials of Vesicular Arbuscular Mycorrhizal (VAM) Fungi to Plant Growth–A Review. Int J Pure Appl Sci Technol 14, 61–79. Adriano, D.C., 1986. Trace Elements in the Terrestrial Environment. Springer, New York. Aerts, R., Dewaelheyns, V., Achten, W.M., 2016. Potential ecosystem services of urban agriculture: a review. PeerJ Prepr. 4, e2286v1. Affholder, M.-C., Prudent, P., Masotti, V., Coulomb, B., Rabier, J., Nguyen-The, B., Laffont-Schwob, I., 2013. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: Human exposure risk. Sci. Total Environ. 454–455, 219–229. AFNOR, 2005. ISO 10390:2005 - Qualité du sol - Détermination du pH. AFNOR, 1992. NF X31-120 - Qualité des sols - Détermination du cuivre, du fer, du manganèse et du zinc Extraction par l’acétate d’ammonium en présence d’EDTA. Aghababaei, F., Raiesi, F., Hosseinpur, A., 2014. The influence of earthworm and mycorrhizal co-inoculation on Cd speciation in a contaminated soil. Soil Biol. Biochem. 78, 21–29. doi:10.1016/j.soilbio.2014.06.010 Agnan, Y., 2013. Bioaccumulation et bioindication par les lichens de la pollution atmosphérique actuelle et passée en métaux et en azote en France: sources, mécanismes et facteurs d’influence. Agostini, E., Talano, M.A., González, P.S., Oller, A.L.W., Medina, M.I., 2013. Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? Appl Microbiol Biotech. 97, 1017-1030. Ahmad, M., Lee, S.S., Lim, J.E., Lee, S.-E., Cho, J.S., Moon, D.H., Hashimoto, Y., Ok, Y.S., 2014a. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95, 433–441. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., 2014b. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19–33. Ainsworth, N., Cooke, J.A., Johnson, M.S., 1991. Biological significance of antimony in contaminated grassland. Water. Air. Soil Pollut. 57, 193–199. Ainsworth, N., Cooke, J.A., Johnson, M.S., 1990a. Distribution of Sb in contaminated grasslands 2: small mammals and invertebrates. Ainsworth, N., Cooke, J.A., Johnson, M.S., 1990b. Distribution of antimony in contaminated grassland: 2-small mammals and invertebrates. Environ. Pollut. 65, 79–87. doi:10.1016/0269-7491(90)90166-A Akhter, F., 2012. Cadmium Accumulation and Distribution in Lettuce and Barley. Alexander, P.D., Alloway, B.J., Dourado, A.M., 2006. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut. 144, 736–745. Alleoni, L.R.F., Iglesias, C.S.M., Mello, S.D.C., Camargo, O.A. de, Casagrande, J.C., Lavorenti, N.A., 2005. Atributos do solo relacionados à adsorção de cádmio e cobre em solos tropicais. Acta Sci. Agron. 27. Alloway, B.J., 1995. Heavy metals in soils. Blackie A.&P., London. Aloui, A., 2009. Compréhension des mécanismes impliqués dans la réponse au cadmium de Medicago truncatula en interaction symbiotique avec Glomus intraradices : analyses physiologiques et moléculaires. Dijon. Aloui, A., Recorbet, G., Gollotte, A., Robert, F., Valot, B., Gianinazzi-Pearson, V., Aschi-Smiti, S., Dumas-Gaudot, E., 2009. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: A root proteomic study. Proteomics 9, 420–433. doi:10.1002/pmic.200800336 Álvarez-Ayuso, E., Otones, V., Murciego, A., García-Sánchez, A., Regina, I.S., 2012. Sb, As and Pb distribution in soils and plants of an agricultural area impacted by former mining activities. Sci. Total Environ. 439, 35–43. Amir, H., Jourand, P., Cavaloc, Y., Ducousso, M., 2014. Role of mycorrhizal fungi on the alleviation of heavy metal toxicity on plant, in: Mycorrhizal Fungi: Use in Sustainable Agriculture and Forestry. An, Y.-J., Kim, M., 2009. Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere 74, 654–659. doi:10.1016/j.chemosphere.2008.10.023 Andrade, S.A.L., Abreu, C.A., de Abreu, M.F., Silveira, A.P.D., 2004. Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology 26, 123–131. doi:10.1016/j.apsoil.2003.11.002

202 Andrewes, P., Cullen, W.R., Feldmann, J., Koch, I., Polishchunk, E., Reimer, K.J., 1998. The Production of Methylated Organoantimony Compounds by Scopulariopsis brevicaulis. Appl Organometal Chem 12, 827–842. ANSES, 2004. Fiche 1 : Evaluation des risques sanitaires liés au dépassement de la limite de qualité de l’antimoine dans les eaux destinées à la consommation humaine. Arias, J.A., Peralta-Videa, J.R., Ellzey, J.T., Ren, M., Viveros, M.N., Gardea-Torresdey, J.L., 2010. Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Envir. and Exp. Botany 68, 139–148. Armar-Klemesu, M., 2000. Urban agriculture and food security, nutrition and health. Grow. Cities Grow. Food Urban Agric. Policy Agenda 99–118. Austruy, A., Shahid, M., Xiong, T., Castrec, M., Payre, V., Niazi, N.K., Sabir, M., Dumat, C., 2014. Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. J. Soils Sediments 14, 666–678. doi:10.1007/s11368-014-0862-z

B Babu, S., Prasanna, R., Bidyarani, N., Nain, L., Shivay, Y.S., 2015. Synergistic action of PGP agents and Rhizobium spp. for improved plant growth, nutrient mobilization and yields in different leguminous crops. Biocatalysis and Agricultural Biotechnology 4, 456–464. doi:10.1016/j.bcab.2015.09.004. Baek, Y.-W., Lee, W.-M., Jeong, S.-W., An, Y.-J., 2013. Ecological effects of soil antimony on the crop plant growth and earthworm activity. Environ. Earth Sci. doi:10.1007/s12665-013-2492-y Bannon, D.I., Drexler, J.W., Fent, G.M., Casteel, S.W., Hunter, P.J., Brattin, W.J., Major, M. a., 2009. Evaluation of Small Arms Range Soils for Metal Contamination and Lead Bioavailability. Environ. Sci. Technol. 43, 9071–9076. Baran, S., Bielińska, J.E., Oleszczuk, P., 2004. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118, 221–232. doi:10.1016/S0016-7061(03)00205-2 Baroni, F., Boscagli, A., Protano, G., Riccobono, F., 2000. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ. Pollut. 109, 347–352. Barrow, C.J., 2012. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 34, 21–28. doi:10.1016/j.apgeog.2011.09.008 Batista, B.L., De Oliveira Souza, V.C., Da Silva, F.G., Barbosa, F., Jr, 2010. Survey of 13 trace elements of toxic and nutritional significance in rice from Brazil and exposure assessment. Food Addit. Contam. Part B 3, 253–262. Beavington, F., 1975. Heavy metal contamination of vegetables and soil in domestic gardens around a smelting complex. Environ. Pollut. 1970 9, 211–217. Bech, J., Corrales, I., Tume, P., Barceló, J., Duran, P., Roca, N., Poschenrieder, C., 2012. Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). J. Geochem. Explor. 113, 100–105. doi:10.1016/j.gexplo.2011.06.006 Beeck, M.O.D., Lievens, B., Busschaert, P., Declerck, S., Vangronsveld, J., Colpaert, J.V., 2014. Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies. PLOS ONE 9, e97629. Beesley, L., Moreno-Jiménez, E., Clemente, R., Lepp, N., Dickinson, N., 2010. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environ. Pollut. 158, 155–160. doi:10.1016/j.envpol.2009.07.021 Beliaeff, B., Burgeot, T., 2002. Integrated biomarker response: a useful tool for ecological risk assessment. Environ. Toxicol. Chem. SETAC 21, 1316–1322. Bello, D., Trasar-Cepada, C., Gil-Sotres, F., 2014. Enzymes and Environmental Contaminants Significant to Agricultural Sciences, in: Enzymes in Agricultural Sciences. Liliana Gianfreda & Maria A Rao, p. 155. Beltrano, J., Ruscitti, M., Arango, M.C., Ronco, M., 2013. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J. Soil Sci. Plant Nutr. 13, 123–141. Bera, T., Collins, H.P., Alva, A.K., Purakayastha, T.J., Patra, A.K., 2016. Biochar and manure effluent effects on soil biochemical properties under corn production. Applied Soil Ecology 107, 360–367. Beyersmann, D., Hartwig, A., 2008. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch. Toxicol. 82, 493–512. doi:10.1007/s00204-008-0313-y Borovička, J., Řanda, Z., Jelínek, E., 2006. Antimony content of macrofungi from clean and polluted areas. Chemosphere 64, 1837–1844. doi:10.1016/j.chemosphere.2006.01.060 Borrego, C., Martins, H., Tchepel, O., Salmim, L., Monteiro, A., Miranda, A.I., 2006. How urban structure can affect city sustainability from an air quality perspective. Environ. Model. Softw., Urban Air Quality ModellingUrban Air Quality Modelling 21, 461–467. doi:10.1016/j.envsoft.2004.07.009 Boulianne, M., 2001. L’agriculture urbaine au sein des jardins collectifs québécois: Empowerment des femmes ou « domestication de l’espace public » ? Anthropol. Sociétés 25, 63. doi:10.7202/000210ar

203 Brazauskiene, D.-M., Paulauskas, V., Sabiene, N., 2008. Speciation of Zn, Cu, and Pb in the soil depending on soil texture and fertilization with sewage sludge compost. J. Soils Sediments 8, 184–192. BRGM, 2012. Rapport public No. RP-61342-FR, Panorama 2011 du marché de l’antimoine. BRGM. Brundrett, M.C., 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77. doi:10.1007/s11104-008-9877-9 Brundrett, M.C., 1991. Mycorrhizas in Natural Ecosystems, in: Advances in Ecological Research. Begon, M, Fitter, A. H. & Macfadyen, London; San Diego, Calif, pp. 171–313.

C Calmano, W., Mangold, S., Welter, E., 2001. An XAFS investigation of the artefacts caused by sequential extraction analyses of Pb-contaminated soils. Fresenius J Anal Chem 371, 823–830. doi:10.1007/s00216-001-1106-9 Campbell, L.M., Norstrom, R.J., Hobson, K.A., Muir, D.C.G., Backus, S., Fisk, A.T., 2005. Hg and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci. Total Environ. 351-352, 247263. doi:10.1016/j.scitotenv.2005.02.043 Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H.A., Oomah, B.D., 2015. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 45, 24–36. doi:10.1016/j.tifs.2015.04.012 Casiot, C., Ujevic, M., Munoz, M., Seidel, J.L., Elbaz-Poulichet, F., 2007. Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Appl. Geochem. 22, 788–798. Catinon, M., Ayrault, S., Spadini, L., Boudouma, O., Asta, J., Tissut, M., Ravanel, P., 2011. Tree bark suber-included particles: A long-term accumulation site for elements of atmospheric origin. Atmos. Environ. 45, 1102–1109. CEAEQ, 2003. Détermination de la matière organique par incinération : méthode de perte au feu (PAF) (No. MA. 1010-PAF 1.0). Cecchi, M., 2008. Devenir du plomb dans le système sol-plante: Cas d’un sol contaminé par une usine de recyclage du plomb et de deux plantes potagères (Fève et Tomate). Cecchi, M., Dumat, C., Alric, A., Felix-Faure, B., Pradere, P., Guiresse, M., 2008. Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma, Antarctic Soils and Soil Forming Processes in a Changing Environment 144, 287–298. doi:10.1016/j.geoderma.2007.11.023 Chan, W.F., Li, H., Wu, F.Y., Wu, S.C., Wong, M.H., 2013. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J. Hazard. Mater. 262, 1116–1122. Chaperon, S., Sauvé, S., 2008. Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation. Ecotoxicol. Environ. Saf. 70, 1–9. Chen, B.D., Zhu, Y.-G., Smith, F.A., 2006. Effects of arbuscular mycorrhizal inoculation on U and As accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62, 1464–1473. Chen, B.D., Zhu, Y.-G., Duan, J., Xiao, X.Y., Smith, S.E., 2007. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ. Pollut., Environmental Pollution in China 147, 374–380. doi:10.1016/j.envpol.2006.04.027 Chen, C., Zhang, J., Lu, M., Qin, C., Chen, Y., Yang, L., Huang, Q., Wang, J., Shen, Z., Shen, Q., 2016. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol. Fertil. Soils 52, 455467. doi:10.1007/s00374-016-1089-5 Chen, W., Zhang, C.K., Cheng, Y., Zhang, S., Zhao, H., 2013. A Comparison of Methods for Clustering 16S rRNA Sequences into OTUs. PLOS ONE 8, e70837. doi:10.1371/journal.pone.0070837 Chen, X., Li, H., Chan, W.F., Wu, C., Wu, F., Wu, S., Wong, M.H., 2012. Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89, 1248–1254. doi:10.1016/j.chemosphere.2012.07.054 Chen, X., Wu, C., Tang, J., Hu, S., 2005. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60, 665–671. doi:10.1016/j.chemosphere.2005.01.029 Cheung Chung, S.W., Kwong, K.P., Yau, J., Wong, W., 2008. Dietary exposure to antimony, lead and mercury of secondary school students in Hong Kong. Food Addit. Contam. Part A 25, 831–840. Choi, J., 2006. Geochemical modeling of cadmium sorption to soil as a function of soil properties. Chemosphere 63, 1824–1834. doi:10.1016/j.chemosphere.2005.10.035 Christophersen, H.M., Smith, F.A., Smith, S.E., 2009. Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol. 184, 962–974. doi:10.1111/j.1469-8137.2009.03009.x

204 Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S., Berta, G., 2005. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59, 21–29. doi:10.1016/j.chemosphere.2004.10.009 Cooper, K., Marshall, L., Vanderlinden, L., Ursitti, F., 2011. Early exposures to hazardous chemicals/pollution and associations with chronic disease: a scoping review (A report from the Canadian Environmental Law Association, the Ontario College of Family Physicians and the Environmental Health Institute of Canada). Cozzolino, V., Di Meo, V., Monda, H., Spaccini, R., Piccolo, A., 2016. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol. Fertil. Soils 52, 15–29. doi:10.1007/s00374-015-1046-8 Cozzolino, V., Pigna, M., Di Meo, V., Caporale, A.G., Violante, A., 2010. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl. Soil Ecol. 45, 262–268. Cullen, W.R., Reimer, K.J., 1989. Arsenic speciation in the environment. Chem. Rev. 89, 713–764.

D Danh, L.T., Truong, P., Mammucari, R., Foster, N., 2014. A Critical Review of the Arsenic Uptake Mechanisms and Phytoremediation Potential of Pteris vittata. Int. J. Phytoremediation 16, 429–453. De Andrade, S.A.L., da Silveira, A.P.D., Jorge, R.A., de Abreu, M.F., 2008. Cadmium accumulation in Sunflower plants influenced by arbuscular mycorrhiza. Int. J. Phytoremediation 10, 1–13. doi:10.1080/15226510701827002 Degola, F., Fattorini, L., Bona, E., Sprimuto, C.T., Argese, E., Berta, G., Sanità di Toppi, L., 2015. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus F. mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents. Plant Physiology and Biochemistry 92, 11–18. Denaix, L., Nguyen, C., Sappin-Didier, V., Schneider, A., 2010. Synthèse sur la contamination en cadmium des productions végétales de grandes cultures. INRA Rep. Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., Jondreville, C., Feidt, C., 2012. In Vivo Validation of the Unified BARGE Method to Assess the Bioaccessibility of Arsenic, Antimony, Cadmium, and Lead in Soils. Environ. Sci. Technol. 46, 6252–6260. doi:10.1021/es3006942 Denys, S., Tack, K., Caboche, J., Delalain, P., 2009. Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Chemosphere 74, 711–716. doi:10.1016/j.chemosphere.2008.09.088 Díaz, G., Azcón-Aguilar, C., Honrubia, M., 1996. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180, 241–249. Diemar, G.A., Filella, M., Leverett, P., Williams, P.A., 2009. Dispersion of antimony from oxidizing ore deposits. Pure Appl. Chem. 81. doi:10.1351/PAC-CON-08-10-21 Doan, T.T., Bouvier, C., Bettarel, Y., Bouvier, T., Henry-des-Tureaux, T., Janeau, J.L., Lamballe, P., Nguyen, B.V., Jouquet, P., 2014. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Appl. Soil Ecol. 73, 78–86. Dodd, M., Grundy, S.L., Reimer, K.J., Cullen, W.R., 1992. Methylated antimony (V) compounds: Synthesis, hydride generation properties and implications for aquatic speciation. Appl. Organomet. Chem. 6, 207–211. Dong, J., Mao, W.H., Zhang, G.P., Wu, F.B., Cai, Y., 2007. Root excretion and plant tolerance to cadmium toxicitya review. Plant Soil Environ. 53, 193. Dowling, N.G., Greenfield, S.M., Fischer, K.S., 1998. Sustainability of Rice in the Global Food System. Int. Rice Res. Inst. Dumat, C., Chiquet, A., Gooddy, D., Aubry, E., Morin, G., Juillot, F., Benedetti, M.F., 2001. Metal ion geochemistry in smelter impacted soils and soilsoutions. Bull. Soc. géol. Fr. 539–548. Dumat, C., Wu, J.T., Pierart, A., Sochacki, L., 2015. Interdisciplinary and participatory research for sustainable management of arsenic pollution in French collective gardens: collective process of risk manufacture, in: 9ième Journées de Recherche En Sciences Sociales. Nancy, pp. 1–20. Dumbrell, A.J., Ashton, P.D., Aziz, N., Feng, G., Nelson, M., Dytham, C., Fitter, A.H., Helgason, T., 2011. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol. 190, 794–804. doi:10.1111/j.1469-8137.2010.03636.x Duran, M., Kara, Y., Akyildiz, G.K., Ozdemir, A., 2007. Antimony and heavy metals accumulation in some macroinvertebrates in the Yesilirmak river (N Turkey) near the Sb-mining area. Bull. Environ. Contam. Toxicol. 78, 395–399. doi:10.1007/s00128-007-9183-x

205

E Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. doi:10.1038/nmeth.2604 Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. Edwards, R., Lepp, N.W., Jones, C., 1995. Other less abundant elements of potential environmental significance: antimony, in: Heavy Metals in Soils. Alloway, London. EFSA, 2009. Cadmium in food, Scientific Opinion of the Panel on Contaminants in the Food Chain 1–139. EFSA, 2008. Annual report. Environmental Protection Agency, 1989. 1989 Toxics Release Inventory data for All US States and Territories. Escarré, J., Lefèbvre, C., Gruber, W., Leblanc, M., Lepart, J., Rivière, Y., Delay, B., 2000. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol. 145, 429–437. doi:10.1046/j.1469-8137.2000.00599.x Ettler, V., Mihaljevič, M., Šebek, O., Nechutný, Z., 2007. Antimony availability in highly polluted soils and sediments – A comparison of single extractions. Chemosphere 68, 455–463. doi:10.1016/j.chemosphere.2006.12.085 Evangelou, M.W.H., Hockmann, K., Pokharel, R., Jakob, A., Schulin, R., 2012. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils. J. Environ. Manage. 108, 102–107. doi:10.1016/j.jenvman.2012.04.044

F Fang, W., Wei, Y., Liu, J., 2016. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics. J. Hazard. Mater. 310, 1–10. doi:10.1016/j.jhazmat.2016.02.025 Feng, R., Wang, X., Wei, C., Tu, S., 2013a. The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Int. J. Phytoremediation 130422131539007. doi:10.1080/15226514.2013.773281 Feng, R., Wei, C., Tu, S., Ding, Y., Wang, R., Guo, J., 2013b. The uptake and detoxification of antimony by plants: a review. Environ. Exp. Bot. 96, 28–34. doi:10.1016/j.envexpbot.2013.08.006 Field, A.P., 2013. Discovering statistics using IBM SPSS statistics: and sex and drugs and rock “n” roll, 4th edition. ed. Sage, Los Angeles. Filella, M., Belzile, N., Chen, Y.-W., 2002. Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth-Sci. Rev. 57, 125–176. doi:10.1016/S0012-8252(01)00070-8 Filella, M., Belzile, N., Lett, M.-C., 2007. Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth-Sci. Rev. 80, 195–217. doi:10.1016/j.earscirev.2006.09.003 Fiol, N., Escudero, C., Villaescusa, I., 2008. Re‐use of Exhausted Ground Coffee Waste for Cr(VI) Sorption. Sep. Sci. Technol. 43, 582–596. doi:10.1080/01496390701812418 Firmin, S., Labidi, S., Fontaine, J., et al., 2015. Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site. Sci. Tot. Environ. 527–528, 91–99. Florijn, P.J., Nelemans, J.A., van Beusichem, M.L., 1992. The influence of the form of nitrogen nutrition on uptake and distribution of cadmium in lettuce varieties. J. Plant Nutr. 15, 2405–2416. doi:10.1080/01904169209364483 Flynn, H.C., Meharg, A.A., Bowyer, P.K., Paton, G.I., 2003. Antimony bioavailability in mine soils. Environ. Pollut. 124, 93–100. Foucault, Y., 2013. Réhabilitation écologique et gestion durable d’un site industriel urbain: cas d’une pollution historique en éléments inorganiques potentiellement toxiques (Pb, Cd, Zn, Cu, Sb et As). Foucault, Y., Lévêque, T., Xiong, T., Schreck, E., Austruy, A., Shahid, M., Dumat, C., 2013. Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 93, 1430–1435. doi:10.1016/j.chemosphere.2013.07.040 FranceAgriMer, 2013. Les filières des fruits et légumes, données 2012. Fries, G.F., 1995. Transport of Organic Environmental Contaminants to Animal Products, in: Ware, G.W., Gunther, F.A. (Eds.), Reviews of Environmental Contamination and Toxicology, Reviews of Environmental Contamination and Toxicology. Springer New York, pp. 71–109. Fu, Z., Wu, F., Amarasiriwardena, D., Mo, C., Liu, B., Zhu, J., Deng, Q., Liao, H., 2010. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China. Sci. Total Environ. 408, 3403–3410. doi:10.1016/j.scitotenv.2010.04.031 Fu, Z., Wu, F., Mo, C., Liu, B., Zhu, J., Deng, Q., Liao, H., Zhang, Y., 2011. Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China. Microchem. J. 97, 12–19. Fujiwara, F., Rebagliati, R.J., Marrero, J., Gómez, D., Smichowski, P., 2011. Antimony as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires. Microchem. J. 97, 62–67.

206

G Galt, R.E., Gray, L.C., Hurley, P., 2014. Subversive and interstitial food spaces: transforming selves, societies, and society–environment relations through urban agriculture and foraging. Local Environ. 19, 133–146. Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y., Zhao, Z.-D., Hu, Y.-K., 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 62, 1959–1975. Garg, N., Bhandari, P., 2013. Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: An overview. Plant Biosyst. - Int. J. Deal. Asp. Plant Biol. 148, 609–621. Garg, N., Singla, P., 2012. The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Scientia Horticulturae 143, 92–101. doi:10.1016/j.scienta.2012.06.010 Garg, N., Singla, P., Bhandari, P., 2015. Metal uptake, oxidative metabolism, and mycorrhization in pigeonpea and pea under arsenic and cadmium stress. Turkish Journal of Agriculture and Forestry 39, 234–250. GB 5749, 2006. Standards for drinking water quality. Gebel, T.W., Suchenwirth, R.H., Bolten, C., Dunkelberg, H.H., 1998. Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure. Environ. Health Perspect. 106, 33. Geebelen, W., Adriano, D.C., Lelie, D. van der, Mench, M., Carleer, R., Clijsters, H., Vangronsveld, J., 2003. Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249, 217–228. doi:10.1023/A:1022534524063 Gerritse, R.G., van Driel, W., 1984. The relationship between adsorption of trace metals, organic matter, and pH in Temperate Soils1. J. Environ. Qual. 13, 197. doi:10.2134/jeq1984.00472425001300020005x Giasson, P., Jaouich, A., Gagné, S., Moutoglis, P., 2005. AMF involvement in zinc and cadmium speciation change and phytoaccumulation. Remediat. J. 15, 75–81. doi:10.1002/rem.20044 Giovannetti, M., Mosse, B., 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500. doi:10.1111/j.1469-8137.1980.tb04556.x Gobas, F., Morrison, H.A., 2000. Bioconcentration and biomagnification in the aquatic environment. Lewis Publishers: Boca Raton, FL. Gojard, S., Weber, F., 1995. Jardins, jardinage et autoconsommation alimentaire. Inra Sci. Soc. Rech. En Économie Sociol. Rural. 4. Gonzalez, Y., Potteiger, M., Bellows, A., Weissman, E., Mees, C., 2016. A Case Study: Advancing Public Health through Gardens for Healthy Communities (GHC) in New York City: The Role of Anti-obesity Objectives in Urban Agriculture Policy, in: Snyder, E.H., McIvor, K., Brown, S. (Eds.), Sowing Seeds in the City. Springer Netherlands, pp. 107–118. González-Chávez, M.C., Carrillo-González, R., Wright, S.F., Nichols, K.A., 2004. The role of glomalin, a protein produced by AMF, in sequestering potentially toxic elements. Environ. Pollut. 130, 317-323. Gregersen, T., 1978. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol. 5, 123–127. doi:10.1007/BF00498806 Gregori, I.D., Pinochet, H., Fuentes, E., Potin-Gautier, M., 2001. Determination of antimony in soils and vegetables by hydride generation atomic fluorescence spectrometry and electrothermal atomic absorption spectrometry. Optimization and comparison of both analytical techniques. J. Anal. At. Spectrom. 16, 172–178. Gu, H.H., Li, F.P., Yu, Q., Gao, Y.Q., Yuan, X.T., 2013. The Roles of Arbuscular Mycorrhizal Fungus Glomus mosseae and Festuca arundinacea in Phytostabilization of Lead/Zinc Tailings. Adv. Mater. Res. 699, 245–250. doi:10.4028/www.scientific.net/AMR.699.245 Guitart, D.A., Pickering, C.M., Byrne, J.A., 2014. Color me healthy: Food diversity in school community gardens in two rapidly urbanising Australian cities. Health Place 26, 110–117. doi:10.1016/j.healthplace.2013.12.014 Guo, Y., George, E., Marschner, H., 1996. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184, 195–205.

H Hadjikakou, S.K., Ozturk, I.I., Banti, C.N., Kourkoumelis, N., Hadjiliadis, N., 2015. Recent advances on antimony(III/V) compounds with potential activity against tumor cells. J. Inorg. Biochem. 153, 293–305. Haghiri, F., 1974. Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. J. Environ. Qual. 3, 180–183. Hammel, W., Debus, R., Steubing, L., 2000. Mobility of antimony in soil and its availability to plants. Chemosphere 41, 1791–1798. doi:10.1016/S0045-6535(00)00037-0 Hammer, E.C., Balogh-Brunstad, Z., Jakobsen, I., Olsson, P.A., Stipp, S.L.S., Rillig, M.C., 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem. 77, 252–260.

207 Hardgrove, S.J., Livesley, S.J., 2016. Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban Forestry & Urban Greening 18, 1–8. doi:10.1016/j.ufug.2016.02.015 Hassan, S.E., Boon, E., St-Arnaud, M., Hijri, M., 2011. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol. Ecol. 20, 3469–3483. doi:10.1111/j.1365-294X.2011.05142.x Hassan, S.E., Hijri, M., St-Arnaud, M., 2013. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol., Biotechnology for the Bio and Green Economy 30, 780–787. doi:10.1016/j.nbt.2013.07.002 He, M., 2007. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environ. Geochem. Health 29, 209–219. doi:10.1007/s10653-006-9066-9 He, M., Wang, X., Wu, F., Fu, Z., 2012. Antimony pollution in China. Sci. Total Environ. 421–422, 41–50. He, M., Yang, J., 1999. Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Sci. Total Environ. 243–244, 149–155. Hetrick, B.A., Wilson, G.W., Figge, D.A., 1994. The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ. Pollut. 86, 171–179. Hildebrandt, U., Kaldorf, M., Bothe, H., 1999. The Zinc Violet and its Colonization by Arbuscular Mycorrhizal Fungi. Journal of Plant Physiology 154, 709–717. Hinojosa, M.B., García-Ruíz, R., Viñegla, B., Carreira, J.A., 2004. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biol. Biochem., Enzymes in the Environment: Activity, Ecology and Applications 36, 1637–1644. doi:10.1016/j.soilbio.2004.07.006 Hinsinger, P., Plassard, C., Tang, C., Jaillard, B., 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 248, 43–59. doi:10.1023/A:1022371130939 Hou, H., Yao, N., Li, J.N., Wei, Y., Zhao, L., Zhang, J., Li, F.S., 2013. Migration and leaching risk of extraneous antimony in three representative soils of China: Lysimeter and batch experiments. Chemosphere 93, 1980–1988. Hough, R.L., Breward, N., Young, S.D., Crout, N.M.J., Tye, A.M., Moir, A.M., Thornton, I., 2004. Assessing Potential Risk of Heavy Metal Exposure from Consumption of Home-Produced Vegetables by Urban Populations. Environ. Health Perspect. 112, 215–221. doi:10.1289/ehp.5589 Hu, Y., Cheng, H., 2016. A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions. Environmental Pollution 214, 400–409. Hu, J., Wu, S., Wu, F., Leung, H.M., Lin, X., Wong, M.H., 2013. Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil. Chemosphere 93, 1359–1365. Hu, X., Sun, Y., Ding, Z., Zhang, Y., Wu, J., Lian, H., Wang, T., 2014. Lead contamination and transfer in urban environmental compartments analyzed by lead levels and isotopic compositions. Environ. Pollut. 187, 42–48. Hua, J., Lin, X., Yin, R., Jiang, Q., Shao, Y., 2009. Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J. of Environ. Sci. 21, 1214–1220. Huang, J.W., Cunningham, S.D., 1996. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol. 134, 75–84. doi:10.1111/j.1469-8137.1996.tb01147.x Huang, Y., Chen, Z., Liu, W., 2012. Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(III) or Sb(V). Plant Soil 352, 41–49. Huang, Z., Pan, X.-D., Wu, P.-G., Han, J.-L., Chen, Q., 2014. Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control 36, 248–252. doi:10.1016/j.foodcont.2013.08.036

I Ikemoto, T., Tu, N.P.C., Okuda, N., Iwata, A., Omori, K., Tanabe, S., Tuyen, B.C., Takeuchi, I., 2007. Biomagnification of trace elements in the aquatic food web in the mekong delta, South Vietnam using stable carbon and nitrogen isotope analysis. Arch. Environ. Contam. Toxicol. 54, 504–515. Ilgen, A.G., Majs, F., Barker, A.J., Douglas, T.A., Trainor, T.P., 2014. Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater. Geochim. Cosmochim. Acta 132, 16–30. Ilgen, A.G., Trainor, T.P., 2012. Sb(III) and Sb(V) Sorption onto Al-Rich Phases: Hydrous Al Oxide and the Clay Minerals Kaolinite KGa-1b and Oxidized and Reduced Nontronite NAu-1. Environ. Sci. Technol. 46, 843–851. INERIS, 2007. Arrêté du 11/01/07 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine mentionnées aux articles R. 1321-2, R. 1321-3, R. 1321-7 et R. 1321-38 du code de la santé publique. Iqbal, M., Saeed, A., Edyvean, R.G.J., 2013. Bioremoval of antimony (III) from contaminated water using several plant wastes: Optimization of batch and dynamic flow conditions for sorption by green bean husk (Vigna radiata). Chem. Eng. J. 225, 192–201. doi:10.1016/j.cej.2013.03.079

208

J Janoušková, M., Pavlíková, D., Macek, T., Vosátka, M., 2005. Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant Soil 272, 29–40. Janoušková, M., Pavlíková, D., Vosátka, M., 2006. Potential contribution of arbuscular mycorrhiza to cadmium immobilization in soil. Chemosphere 65, 1959–1965. doi:10.1016/j.chemosphere.2006.07.007 Jansa, J., Mozafar, A., Anken, T., Ruh, R., Sanders, I., Frossard, E., 2002. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234. doi:10.1007/s00572-002-0163-z Jarrah, M., Ghasemi-Fasaei, R., Karimian, N., Ronaghi, A., Zarei, M., Mayel, S., 2014. Investigation of Arbuscular mycorrhizal Fungus and EDTA Efficiencies on Lead Phytoremediation by Sunflower in a Calcareous Soil. Bioremediation J. 18, 71–79. doi:10.1080/10889868.2013.847401 Järup, L., 2003. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182. doi:10.1093/bmb/ldg032 Jenkins, R.O., Craig, P.J., Goessler, W., Miller, D., Ostah, N., Irgolic, K.J., 1998. Biomethylation of inorganic antimony compounds by an aerobic fungus: Scopulariopsis brevicaulis. Environ. Sci. Technol. 32, 882–885. Jha, P., Biswas, A.K., Lakaria, B.L., Rao, A.S., others, 2010. Biochar in agriculture-prospects and related implications. Curr. Sci. 99, 1218–1225. Jiang, Q.-Y., Tan, S.-Y., Zhuo, F., Yang, D.-J., Ye, Z.-H., Jing, Y.-X., 2016. Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Applied Soil Ecology 98, 112–120. Jiang, W., Gou, G., Ding, Y., 2013. Influence of Arbuscular Mycorrhizal Fungi on Growth and Mineral Element Absorption of Chenglu Hybrid Bamboo Seedlings. Pak. J. Bot. 45, 303–310. Jiang, X., Wen, S., Xiang, G., 2010. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials. J. Hazard. Mater. 175, 146–150. doi:10.1016/j.jhazmat.2009.09.141 Johnson, C.A., Moench, H., Wersin, P., Kugler, P., Wenger, C., 2005. Solubility of Antimony and Other Elements in Samples Taken from Shooting Ranges. J. Environ. Qual. 34, 248–254. Joner, E.J., Briones, R., Leyval, C., 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226, 227–234. Joner, E.J., Leyval, C., 1997. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/ Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytologist 135, 353–360. Joner, E.J., Leyval, C., 2001. Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils 33, 351–357. Jones, D.L., 1998. Organic acids in the rhizosphere – a critical review. Plant Soil 205, 25–44. Jones, P., Martin, M., 2003. A review of the literature on the occurrence and survival of pathogens of animals and humans in green compost. Institute for Animal Health.

K Kabata-Pendias, A., Mukherjee, A.B., 2007. Trace Elements of Group 15 (Previously Group Va), in: Trace Elements from Soil to Human. Springer Berlin Heidelberg, pp. 381–399. Kaldorf, M., Kuhn, A.J., Schröder, W.H., Hildebrandt, U., Bothe, H., 1999. Selective Element Deposits in Maize Colonized by a Heavy Metal Tolerance Conferring Arbuscular Mycorrhizal Fungus. J. Plant Phys. 154, 718-728. Kamiya, T., Fujiwara, T., 2009. Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol. 50, 1977–1981. doi:10.1093/pcp/pcp130 Kangwankraiphaisan, T., Suntornvongsagul, K., Sihanonth, P., Klysubun, W., Gadd, G.M., 2013. Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment. BioMetals 26, 489–505. doi:10.1007/s10534-013-9634-2 Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N.W., Beesley, L., 2011. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 191, 41–48. doi:10.1016/j.jhazmat.2011.04.025 Keto, R., 1999. Analysis and comparison of bullet leads by inductively-coupled plasma mass spectrometry. J. Forensic Sci. 44, 1020–1026. Khan, A.G., 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18, 355–364. doi:10.1016/j.jtemb.2005.02.006 Khan, F.I., Husain, T., Hejazi, R., 2004. An overview and analysis of site remediation technologies. J. Environ. Manage. 71, 95–122. doi:10.1016/j.jenvman.2004.02.003

209 Khan, S., Waqas, M., Ding, F., Shamshad, I., Arp, H.P.H., Li, G., 2015. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J. Hazard. Mater. 300, 243–253. doi:10.1016/j.jhazmat.2015.06.050 Kim, B.F., Poulsen, M.N., Margulies, J.D., Dix, K.L., Palmer, A.M., Nachman, K.E., 2014. Urban Community Gardeners’ Knowledge and Perceptions of Soil Contaminant Risks. PLoS ONE 9, e87913. Kim, M.-S., koo, N., Kim, J.-G., 2012. Charascteristics and recycling of spent coffee grounds. Life Sci. Nat. Resour. Res. 20, 59–69. Kim, M.-S., Min, H.-G., Koo, N., Park, J., Lee, S.-H., Bak, G.-I., Kim, J.-G., 2014. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments. J. Environ. Manage. 146, 124–130. doi:10.1016/j.jenvman.2014.07.001 Koide, R.T., Mosse, B., 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14, 145–163. Koreňovská, M., 2006. Determination of arsenic, antimony, and selenium by FI-HG-AAS in foods consumed in Slovakia. J. Food Nutr. Res. 45, 84–88. Kouimtzis, T., Misaelides, P., Samara, C., Annousis, I., Tsalev, D., 1992. Determination of Heavy Metal Distribution in the Environment of Thessaloniki Greece by Means of Nuclear Microanalysis. Krachler, M., Emons, H., Zheng, J., 2001. Speciation of antimony for the 21st century: promises and pitfalls. TrAC Trends Anal. Chem. 20, 79–90. Krachler, M., Zheng, J., Koerner, R., Zdanowicz, C., Fisher, D., Shotyk, W., 2005. Increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada. J. Environ. Monit. 7, 1169. doi:10.1039/b509373b Kumar, M., 2016. Understanding the remobilization of copper, zinc, cadmium and lead due to ageing through sequential extraction and isotopic exchangeability. Environ Monit Assess 188, 381. Kumpiene, J., Lagerkvist, A., Maurice, C., 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – A review. Waste Manag. 28, 215–225. doi:10.1016/j.wasman.2006.12.012 Kuroda, K., Endo, G., Okamoto, A., Yoo, Y.S., 1991. Genotoxicity of beryllium, gallium and antimony in short-term assays. Mutat. Res. Lett. 264, 163–170.

L Lange, B., Faucon, M.-P., Meerts, P., Shutcha, M., Mahy, G., Pourret, O., 2014. Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil. doi:10.1007/s11104-014-2068-y Laporte, M.A., Denaix, L., Dauguet, S., Nguyen, C., 2014. Longitudinal variation in Cd influx in sunflower (Helianthus annuus L.) roots as depending on the growth substrate, root age and root order. Plant Soil 381, 235–247. Laporte, M.A., Denaix, L., Pagès, L., Sterckeman, T., Flénet, F., Dauguet, S., Nguyen, C., 2013. Longitudinal variation in cadmium influx in intact first order lateral roots of sunflower (Helianthus annuus. L). Plant Soil 372, 581–595. doi:10.1007/s11104-013-1756-3 Lateb, M., Meroney, R.N., Yataghene, M., Fellouah, H., Saleh, F., Boufadel, M.C., 2016. On the use of numerical modelling for near-field pollutant dispersion in urban environments − A review. Environ. Pollut., Special Issue: Urban Health and Wellbeing 208, Part A, 271–283. doi:10.1016/j.envpol.2015.07.039 LeCroy, C., Masiello, C.A., Rudgers, J.A., Hockaday, W.C., Silberg, J.J., 2013. Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface. Soil Biol. Biochem. 58, 248–254. Lee, B.-T., Kim, K.-W., 2013. Toxicokinetics and Biotransformation of As(III) and As(V) in Eisenia fetida. Hum. Ecol. Risk Assess. Int. J. 19, 792–806. doi:10.1080/10807039.2012.708285 Lehmann, J., Joseph, S., 2015. Biochar for Environmental Management: Science, Technology and Implementation. Routledge. Lessard, I., Renella, G., Sauvé, S., Deschênes, L., 2013. Metal toxicity assessment in soils using enzymatic activity: Can water be used as a surrogate buffer? Soil Biol. Biochem. 57, 256–263. doi:10.1016/j.soilbio.2012.09.009 Lessard, I., Sauvé, S., Deschênes, L., 2014. Toxicity response of a new enzyme-based functional diversity methodology for Zn-contaminated field-collected soils. Soil Biol. Biochem. 71, 87–94. Letunic, I., Bork, P., 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245. doi:10.1093/nar/gkw290 Leveque, T., 2014. Biomonitoring environnemental et sanitaire des sols pollués par les éléments traces métalliques. Leveque, T., Capowiez, Y., Schreck, E., Mazzia, C., Auffan, M., Foucault, Y., Austruy, A., Dumat, C., 2013. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris). Environ. Pollut. 179, 232–241. doi:10.1016/j.envpol.2013.03.066

210 Leveque, T., Capowiez, Y., Schreck, E., Xiong, T.-T., Foucault, Y., Dumat, C., 2014. Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils. Environ. Pollut. Levresse, G., Lopez, G., Tritlla, J., López, E.C., Chavez, A.C., Salvador, E.M., Soler, A., Corbella, M., Sandoval, L.G.H., Corona-Esquivel, R., 2012. Phytoavailability of antimony and heavy metals in arid regions: The case of the Wadley Sb district (San Luis, Potosí, Mexico). Sci. Total Environ. 427–428, 115–125. Leyval, C., Joner, E.J., Val, C. del, Haselwandter, K., 2002. Potential of arbuscular mycorrhizal fungi for bioremediation, in: Gianinazzi, S., Schüepp, H., Barea, J.M., Haselwandter, K. (Eds.), Mycorrhizal Technology in Agriculture. Birkhäuser Basel, pp. 175–186. Li, A.-R., Guan, K.-Y., Stonor, R., Smith, S.E., Smith, F.A., 2013. Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Ann. Bot. 112, 1089–1098. doi:10.1093/aob/mct177 Li, Z., Feng, X., Li, G., Bi, X., Zhu, J., Qin, H., Dai, Z., Liu, J., Li, Q., Sun, G., 2013. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environ. Pollut. 182, 408–416. doi:10.1016/j.envpol.2013.07.041 Lim, D., Jung, S.W., Choi, M.S., Kang, S.M., Jung, H.S., Choi, J.Y., 2013. Historical record of metal accumulation and lead source in the southeastern coastal region of Korea. Mar. Pollut. Bull. 74, 441–445. Limousy, L., Jeguirim, M., Dutournié, P., Kraiem, N., Lajili, M., Said, R., 2013. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 107, 323–329. Lin, Q., Chen, Y.X., He, Y.F., Tian, G.M., 2004. Root-induced changes of lead availability in the rhizosphere of Oryza sativa L. Agric. Ecosyst. Environ. 104, 605–613. doi:10.1016/j.agee.2004.01.001 Lin, Z., Schneider, A., Sterckeman, T., Nguyen, C., 2015. Ranking of mechanisms governing the phytoavailability of cadmium in agricultural soils using a mechanistic model. Plant Soil 399, 89–107. Lintschinger, J., Schramel, O., Kettrup, A., 1998. The analysis of antimony species by using ESI-MS and HPLCICP-MS. Fresenius J. Anal. Chem. 361, 96–102. doi:10.1007/s002160050841 Liu, H., Yuan, M., Tan, S., Yang, X., Lan, Z., Jiang, Q., Ye, Z., Jing, Y., 2015. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Applied Soil Ecology 89, 44–49. doi:10.1016/j.apsoil.2015.01.006 Liu, L., Gong, Z., Zhang, Y., Li, P., 2014. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology 1–8. doi:10.1007/s10646-014-1331-6 Liu, W., Zhou, Q., An, J., Sun, Y., Liu, R., 2010. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J. Hazard. Mater. 173, 737–743. doi:10.1016/j.jhazmat.2009.08.147 Long, L.K., Yao, Q., Guo, J., Yang, R.H., Huang, Y.H., Zhu, H.H., 2010. Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. Eur. J. Soil Biol. 46, 288–294. doi:10.1016/j.ejsobi.2010.06.003 Ludwig-Müller, J., Xu, J., Agostini, E., Georgiev, M.I., 2014. Advances in transformed root cultures for root biofactory and phytoremediation research, in: Morte, A., Varma, A. (Eds.), Root Engineering, Soil Biology.pp. 387–405. Lugli, F., Mahler, C.F., 2016. A soil-plant model applied to phytoremediation of metals. Int. J. Phytoremediation 18, 295–307. doi:10.1080/15226514.2015.1094445 Lux, A., Martinka, M., Vaculík, M., White, P.J., 2011. Root responses to cadmium in the rhizosphere: a review. J. Exp. Bot. 62, 21–37. doi:10.1093/jxb/erq281

M Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kennelley, E.D., 2001. A fern that hyperaccumulates arsenic. Nature 409, 579–579. doi:10.1038/35054664 Ma, Y., Dickinson, N.M., Wong, M.H., 2006. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology and Biochemistry 38, 1403–1412. Maček, I., Šibanc, N., Kavšček, M., Lestan, D., 2016. Diversity of arbuscular mycorrhizal fungi in metal polluted and EDTA washed garden soils before and after soil revitalization with commercial and indigenous fungal inoculum. Ecological Engineering 95, 330–339. Madrid, F., López, R., Cabrera, F., 2007. Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditions. Agric. Ecosyst. Environ. 119, 249–256. Malcová, R., Vosátka, M., Gryndler, M., 2003. Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Applied Soil Ecology 23, 55–67. Mani, D., Mourya, V.K., Balak, S., Patel, N.K., Pal, N., 2014. Effect of Organic Matter on the uptake of Cadmium by Spinach (Spinacea oleracea L.). Asian J Adv Basic Sci 3, 144–150.

211 Mansour, S.A., Belal, M.H., Abou-Arab, A.A.K., Ashour, H.M., Gad, M.F., 2009. Evaluation of some pollutant levels in conventionally and organically farmed potato tubers and their risks to human health. Food Chem. Toxicol. 47, 615–624. doi:10.1016/j.fct.2008.12.019 Marques, A.P.G.C., Oliveira, R.S., Samardjieva, K.A., Pissarra, J., Rangel, A.O.S.S., Castro, P.M.L., 2007. Solanum nigrum grown in contaminated soil: Effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environmental Pollution, Ozone at the Intensive Monitoring Plots in SW Europe 145, 691–699. Martellozzo, F., Landry, J.-S., Plouffe, D., Seufert, V., Rowhani, P., Ramankutty, N., 2014. Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand. Environ. Res. Lett. 9, 64025. Martin, G., Clift, R., Christie, I., 2016. Urban Cultivation and Its Contributions to Sustainability: Nibbles of Food but Oodles of Social Capital. Sustainability 8, 409. doi:10.3390/su8050409 Masset, S., Monteil-Rivera, F., Dupont, L., Dumonceau, J., Aplincourt, M., 2000. Influence of humic acid on sorption of Co (II), Sr (II), and Se (IV) on goethite. Agronomie 20, 525–535. McClintock, N., 2010. Why farm the city? Theorizing urban agriculture through a lens of metabolic rift. Camb. J. Reg. Econ. Soc. rsq005. doi:10.1093/cjres/rsq005 McLaughlin, M.J., Singh, B.R., 1999. Cadmium in Soils and Plants, in: McLaughlin, M.J., Singh, B.R. (Eds.), Cadmium in Soils and Plants, Developments in Plant and Soil Sciences. Springer Netherlands, pp. 1–9. Medina, A., Vassilev, N., Azcón, R., 2010. The interactive effect of an AM fungus and an organic amendment with regard to improving inoculum potential and the growth and nutrition of Trifolium repens in Cd-contaminated soils. Appl. Soil Ecol. 44, 181–189. doi:10.1016/j.apsoil.2009.12.004 Meers, E., Samson, R., Tack, F.M.G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., Verloo, M.G., 2007. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ. Exp. Bot. 60, 385–396. doi:10.1016/j.envexpbot.2006.12.010 Meharg, A.A., Jardine, L., 2003. Arsenite transport into paddy rice (Oryza sativaL.) roots. New Phytol. 157, 39–44. Mersi, W. von, Schinner, F., 1991. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol. Fertil. Soils 11, 216–220. doi:10.1007/BF00335770 Michalska, M., Asp, H., 2001. Influence of lead and cadmium on growth, heavy metal uptake, and nutrient concentration of three lettuce cultivars grown in hydroponic culture. Commun. Soil Sci. Plant Anal. 32, 571–583. Mijangos, I., Albizu, I., Epelde, L., Amezaga, I., Mendarte, S., Garbisu, C., 2010. Effects of liming on soil properties and plant performance of temperate mountainous grasslands. J. Environ. Manage. 91, 2066–2074. Mitsunobu, S., Harada, T., Takahashi, Y., 2006. Comparison of Antimony behavior with that of Arsenic under various soil redox conditions. Environ. Sci. Technol. 40, 7270–7276. doi:10.1021/es060694x Mitsunobu, S., Takahashi, Y., Terada, Y., 2010. μ-XANES Evidence for the Reduction of Sb(V) to Sb(III) in Soil from Sb Mine Tailing. Environ. Sci. Technol. 44, 1281–1287. doi:10.1021/es902942z Mombo, S., Foucault, Y., Deola, F., Gaillard, I., Goix, S., Shahid, M., Schreck, E., Pierart, A., Dumat, C., 2016. Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J. Soils Sed. 16, 1214–1224. doi:10.1007/s11368-015-1069-7 Montiel-Rozas, M. del M., López-García, Á., Kjøller, R., Madejón, E., Rosendahl, S., 2016. Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements. Mycorrhiza 26, 575–585. doi:10.1007/s00572-016-0694-3 Moore, A.W., Russell, J.S., 1972. Factors affecting dehydrogenase activity as an index of soil fertility. Plant Soil 37, 675–682. doi:10.1007/BF01348525 Moreno, J.L., Hernández, T., Pérez, A., Garcı́a, C., 2002. Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose. Appl. Soil Ecol. 21, 149–158. Moreno, T., Querol, X., Alastuey, A., Amato, F., Pey, J., Pandolfi, M., Kuenzli, N., Bouso, L., Rivera, M., Gibbons, W., 2010. Effect of fireworks events on urban background trace metal aerosol concentrations: Is the cocktail worth the show? J. Hazard. Mater. 183, 945–949. doi:10.1016/j.jhazmat.2010.07.082 Moreno Flores, O., 2007. Agricultura Urbana: Nuevas Estrategias de Integración Social y Recuperación Ambiental en la Ciudad. Repos. Académico - Univ. Chile. Mukhopadhyay, R., Bhattacharjee, H., Rosen, B.P., 2014. Aquaglyceroporins: generalized metalloid channels. Biochim. Biophys. Acta BBA - Gen. Subj. 1840, 1583–1591. doi:10.1016/j.bbagen.2013.11.021 Müller, K., Daus, B., Mattusch, J., Stärk, H.-J., Wennrich, R., 2009. Simultaneous determination of inorganic and organic antimony species by using anion exchange phases for HPLC–ICP-MS and their application to plant extracts of Pteris vittata. Talanta 78, 820–826. doi:10.1016/j.talanta.2008.12.059 Müller, K., Daus, B., Mattusch, J., Vetterlein, D., Merbach, I., Wennrich, R., 2013. Impact of arsenic on uptake and bio-accumulation of antimony by arsenic hyperaccumulator Pteris vittata. Environ. Pollut. 174, 128–133. Munier-Lamy, C., Deneux-Mustin, S., Mustin, C., Merlet, D., Berthelin, J., Leyval, C., 2007. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. Journal of Environmental Radioactivity 97, 148–158. doi:10.1016/j.jenvrad.2007.04.001

212 Murciego, A.M., Sánchez, A.G., González, M.A.R., Gil, E.P., Gordillo, C.T., Fernández, J.C., Triguero, T.B., 2007. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environ. Pollut. 145, 15–21. Murray, H., Pinchin, T.A., Macfie, S.M., 2011. Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. J. Soils Sediments 11, 815–829. doi:10.1007/s11368-011-0359-y Mwangi, A.M.K.-, Kahangi, E.M., Ateka, E., Onguso, J., Mukhongo, R.W., Mwangi, E.K., Jefwa, J.M., 2013. Growth effects of microorganisms based commercial products inoculated to tissue cultured banana cultivated in three different soils in Kenya. Appl. Soil Ecol. 64, 152–162. doi:10.1016/j.apsoil.2012.12.002

N Nakamaru, Y., Tagami, K., Uchida, S., 2006. Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior. Environ. Pollut. 141, 321–326. doi:10.1016/j.envpol.2005.08.040 Nannipieri, P., Kandeler, E., Ruggiero, P., 2002. Enzymes Activities and Microbial and Biochemical Processes in Soil, in: Enzymes in the Environment: Activity, Ecology, and Applications. CRC Press, pp. 1–33. Nannoni, F., Protano, G., Riccobono, F., 2011. Uptake and bioaccumulation of heavy elements by two earthworm species from a smelter contaminated area in northern Kosovo. Soil Biol. Biochem. 43, 2359–2367. Navas-Acien, A., Tellez-Plaza, M., Guallar, E., Muntner, P., Silbergeld, E., Jaar, B., Weaver, V., 2009. Blood Cd and Pb and Chronic Kidney Disease in US Adults: A Joint Analysis. Am. J. Epidemiol. 170, 1156-1164. NEN 5704, 1996. Bodem. Monstervoorbehandeling van grond. Extractie met een calciumchloride-oplossing (0.01 mol/l). Nguyen, C., Cornu, J.Y., Denaix, L., Laurette, J., Sappin-Didier, V., Schneider, A., 2013. Les innovations - ARVALIS (No. 406), Perspectives agricoles. Nilsson, R.H., Kristiansson, E., Ryberg, M., Hallenberg, N., Larsson, K.H., 2008. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinforma. 4. Norton, G., Deacon, C., Mestrot, A., Feldmann, J., Jenkins, P., Baskaran, C., Meharg, A.A., 2013. Arsenic speciation and localization in horticultural produce grown in a historically impacted mining region. Environ. Sci. Technol. 130529080645002. doi:10.1021/es400720r Nye, P.H., 1981. Changes of pH across the rhizosphere induced by roots. Plant Soil 61, 7–26.

O Okkenhaug, G., Amstätter, K., Lassen Bue, H., Cornelissen, G., Breedveld, G.D., Henriksen, T., Mulder, J., 2013. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments. Environ. Sci. Technol. 130528161742001. doi:10.1021/es302448k Okkenhaug, G., Zhu, Y.-G., He, J., Li, X., Luo, L., Mulder, J., 2012. Antimony (Sb) and Arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in Rice. Environ. Sci. Technol. 46, 3155–3162. doi:10.1021/es2022472 Okkenhaug, G., Zhu, Y.-G., Luo, L., Lei, M., Li, X., Mulder, J., 2011. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ. Pollut. 159, 2427–2434. Omaka, N.O., Offor, I.F., Chukwu, E.R., Ewuzie, U., 2015. Comparison of the extraction efficiencies of four different solvents used in trace metal digestion of selected soils within Abakaliki, Nigeria. Journal of Applied Sciences and Environmental Management 19, 225–232. doi:10.4314/jasem.v19i2.8 Oomen, A.G., Rompelberg, C.J.M., Bruil, M.A., Dobbe, C.J.G., Pereboom, D.P.K.H., Sips, A.J.A.M., 2003. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch. Environ. Contam. Toxicol. 44, 281–287. doi:10.1007/s00244-002-1278-0 Öpik, M., Zobel, M., Cantero, J.J., Davison, J., Facelli, J.M., Hiiesalu, I., Jairus, T., Kalwij, J.M., Koorem, K., Leal, M.E., Liira, J., Metsis, M., Neshataeva, V., Paal, J., Phosri, C., Põlme, S., Reier, Ü., Saks, Ü., Schimann, H., Thiéry, O., Vasar, M., Moora, M., 2013. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23, 411–430. doi:10.1007/s00572-013-0482-2 Oprea, G., Michnea, A., Mihali, C., Senilă, M., Roman, C., Jelea, S., Butean, C., Barz, C., 2010. Arsenic and Antimony content in soil and plants from baia mare area, Romania. Am. J. Environ. Sci. 6, 33.

213

P Pagano, M.C., Oehl, F., Silva, G.A., Maia, L.C., Silva, D.K., Cabello, M.N., 2016. Advances in Arbuscular Mycorrhizal Taxonomy, in: Pagano, M.C. (Ed.), Recent Advances on Mycorrhizal Fungi, Fungal Biology. Springer International Publishing, pp. 15–21. Pan, X., Zhang, D., Chen, X., Bao, A., Li, L., 2010a. Antimony Accumulation, Growth Performance, Antioxidant Defense System and Photosynthesis of Zea mays in Response to Antimony Pollution in Soil. Water. Air. Soil Pollut. 215, 517–523. doi:10.1007/s11270-010-0496-8 Pan, X., Zhang, D., Chen, X., Li, L., Mu, G., Li, L., Song, W., 2010b. Sb uptake and photosynthesis of Zea mays growing in soil watered with Sb mine drainage: An OJIP chlorophyll fluorescence study. Pol. J. Environ. Stud. 19, 981–987. Pant, N., Kumar, G., Upadhyay, A.D., Patel, D.K., Gupta, Y.K., Chaturvedi, P.K., 2014. Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ. Sci. Pollut. Res. 1–9. doi:10.1007/s11356-014-2986-5 Pascaud, G., Leveque, T., Soubrand, M., Boussen, S., Joussein, E., Dumat, C., 2014. Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility. Environ. Sci. Pollut. Res. Int. 21, 4254–4264. doi:10.1007/s11356-013-2297-2 Pauget, B., Gimbert, F., Coeurdassier, M., Crini, N., Pérès, G., Faure, O., Douay, F., Richard, A., Grand, C., de Vaufleury, A., 2013. Assessing the in situ bioavailability of trace elements to snails using accumulation kinetics. Ecol. Indic. 34, 126–135. doi:10.1016/j.ecolind.2013.04.018 Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., Gascó, G., 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5, 65–75. doi:10.5194/se-5-65-2014 Pelfrene, A., 2016. bioaccessibilité des polluants métalliques: apport à l’éavluation de l’exposition des populations vivant sur des sites contaminés. Pérez-Sirvent, C., Martínez-Sánchez, M.J., Martínez-López, S., Bech, J., Bolan, N., 2012. Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. J. Geochem. Explor. 123, 128–135. doi:10.1016/j.gexplo.2012.08.002 Peris, M., Micó, C., Recatalá, L., Sánchez, R., Sánchez, J., 2007. Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci. Total Environ. 378, 42–48. Pettinelli, D., n.d. Lead in Garden Soils. Pierart, A., Shahid, M., Séjalon-Delmas, N., Dumat, C., 2015. Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 289, 219–234. doi:10.1016/j.jhazmat.2015.02.011 Poggio, L., Vrscaj, B., Schulin, R., Hepperle, E., Ajmone Marsan, F., 2009. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environ. Pollut. Barking Essex 1987 157, 680–689. Pourrias, J., 2014. Production alimentaire et pratiques culturales en agriculture urbaine. Analyse agronomique de la fonction alimentaire des jardins associatifs urbains à Paris et Montréal. AgroParisTech, Paris. Pourrut, B., Shahid, M., Dumat, C., Winterton, P., Pinelli, E., 2011. Lead Uptake, Toxicity, and Detoxification in Plants, in: Whitacre, D.M. (Ed.), Reviews of Environmental Contamination and Toxicology Volume 213, Reviews of Environmental Contamination and Toxicology. Springer New York, pp. 113–136. Prokop, Z., Cupr, P., Zlevorova-Zlamalikova, V., Komarek, J., Dusek, L., Holoubek, I., 2003. Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environ. Res. 91, 119–126. doi:10.1016/S0013-9351(02)00012-9 Puglisi, E., Del Re, A.A.M., Rao, M.A., Gianfreda, L., 2006. Development and validation of numerical indexes integrating enzyme activities of soils. Soil Biol. Biochem. 38, 1673–1681. doi:10.1016/j.soilbio.2005.11.021 Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M., Das, P., 2010. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J. of Haz. Mat. 177, 465–474.

Q Queirolo, F., Stegen, S., Restovic, M., Paz, M., Ostapczuk, P., Schwuger, M.J., Muñoz, L., 2000. Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile. Sci. Total Environ. 255, 75–84. doi:10.1016/S0048-9697(00)00450-2 Quenea, K., Lamy, I., Winterton, P., Bermond, A., Dumat, C., 2009. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 149, 217–223.

214

R Radwan, M.A., Salama, A.K., 2006. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 44, 1273–1278. doi:10.1016/j.fct.2006.02.004 Rakshit, S., Sarkar, D., Punamiya, P., Datta, R., 2011. Antimony sorption at gibbsite–water interface. Chemosphere 84, 480–483. doi:10.1016/j.chemosphere.2011.03.028 Randich, E., Duerfeldt, W., McLendon, W., Tobin, W., 2002. A metallurgical review of the interpretation of a bullet lead compositional analysis. Forensic Sci. Int. 127, 174–191. Rangel, W. de M., Schneider, J., Costa, E.T. de S., Soares, C.R.F.S., Guilherme, L.R.G., Moreira, F.M. de S., 2014. Phytoprotective Effect of Arbuscular Mycorrhizal Fungi Species Against Arsenic Toxicity in Tropical Leguminous Species. Int. J. Phytoremediation 16, 840–858. doi:10.1080/15226514.2013.856852 Rapin, F., Tessier, A., Campbell, P.G., Carignan, R., 1986. Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Environ. Sci. Technol. 20, 836–840. Remy, W., Taylor, T.N., Hass, H., Kerp, H., 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. 91, 11841–11843. Ren, J., Ma, L.Q., Sun, H., Cai, F., Luo, J., 2014. Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate. Sci. Total Environ. 475, 83–89. doi:10.1016/j.scitotenv.2013.12.103 Repères. Sols et environnement, Chiffres Clés, 2015. . Commisariat Gérénal au Développement Durable. Rivera-Becerril, F., Tuinen, D. van, Martin-Laurent, F., Metwally, A., Dietz, K.-J., Gianinazzi, S., Gianinazzi-Pearson, V., 2005. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16, 51–60. doi:10.1007/s00572-005-0016-7 Robbins, N., Zhang, Z.-F., Sun, J., Ketterer, M.E., Lalumandier, J.A., Shulze, R.A., 2010. Childhood lead exposure and uptake in teeth in the Cleveland area during the era of leaded gasoline. Sci. Total Environ. 408, 4118–4127. Roper, A.J., Williams, P.A., Filella, M., 2012. Secondary antimony minerals: Phases that control the dispersion of antimony in the supergene zone. Chem. Erde - Geochem. 72, 9–14. doi:10.1016/j.chemer.2012.01.005 Roth, E., Mancier, V., Fabre, B., 2012. Adsorption of cadmium on different granulometric soil fractions: Influence of organic matter and temperature. Geoderma 189–190, 133–143. doi:10.1016/j.geoderma.2012.04.010 Ruttens, A., Colpaert, J.V., Mench, M., Boisson, J., Carleer, R., Vangronsveld, J., 2006. Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environ. Pollut., Passive Air Sampling of Persistent Organic PollutantsPassive Air Sampling of Persistent Organic Pollutants 144, 533–539. doi:10.1016/j.envpol.2006.01.021

S Shahabivand, S., Maivan, H.Z., Goltapeh, E.M., Sharifi, M., Aliloo, A.A., 2012. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol. Biochem. 60, 53–58. doi:10.1016/j.plaphy.2012.07.018 Sakan, S., Popović, A., Škrivanj, S., Sakan, N., Đorđević, D., 2016. Comparison of single extraction procedures and the application of an index for the assessment of heavy metal bioavailability in river sediments. Environ Sci Pollut Res 1–16. doi:10.1007/s11356-016-7341-6 Salminen, R., Batista, M.J., Bidovec, M., et al, 2005. Geochemical Atlas of Europe, Part 1, Background Information, Methodology and Maps. Geological Survey of Finland. Sanchez, W., Burgeot, T., Porcher, J.-M., 2013. A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ. Sci. Pollut. Res. Int. 20, 2721–2725. doi:10.1007/s11356-012-1359-1 Sánchez-Blanco, M.J., Ferrández, T., Morales, M., Morte, A., Alarcón, J.J., 2004. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J. Plant Physiol. 161, 675–682. Sanchez-Hernandez, J.C., Sandoval, M., Pierart, A., under review. Short-term response of soil enzyme activities in a chlorpyrifos-treated Andisol: use of enzyme-based indexes. Ecol. Indic. Sanders, I.R., Clapp, J.P., Wiemken, A., 1996. The genetic diversity of AMF in natural ecosystems - a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol. 133, 123–134. Sanders, O.I., Rensing, C., Kuroda, M., Mitra, B., Rosen, B.P., 1997. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J. Bacteriol. 179, 3365–3367. Satyanarayana, T., Getzin, L.W., 1973. Properties of a stable cell-free esterase from soil. Biochem. 12, 1566-72. Säumel, I., Kotsyuk, I., Hölscher, M., Lenkereit, C., Weber, F., Kowarik, I., 2012. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighborhoods in Berlin, Germany. Environ. Pollut. 165, 124–132. doi:10.1016/j.envpol.2012.02.019

215 Sauvé, S., Hendershot, W., Allen, H.E., 2000. Solid-Solution Partitioning of Metals in Contaminated Soils:  Dependence on pH, Total Metal Burden, and Organic Matter. Environ. Sci. Technol. 34, 1125–1131. Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R., 1996. Methods in Soil Biology. Schloss, P.D., Westcott, S.L., Ryabin, et al, 2009. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 75, 7537–7541. doi:10.1128/AEM.01541-09 Schoch, C.L., Robbertse, B., Robert, V., et al, 2014. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database J. Biol. Databases Curation 2014. Schoch, C.L., Seifert, K.A., Huhndorf, S., et al, 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. 109, 6241–6246. doi:10.1073/pnas.1117018109 Schreck, E., Dappe, V., Sarret, G., Sobanska, S., Nowak, D., Nowak, J., Stefaniak, E.A., Magnin, V., Ranieri, V., Dumat, C., 2014. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves. Sci. Total Environ. 476–477, 667–676. doi:10.1016/j.scitotenv.2013.12.089 Schreck, E., Foucault, Y., Sarret, G., Sobanska, S., Cécillon, L., Castrec-Rouelle, M., Uzu, G., Dumat, C., 2012. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci. Total Environ. 427–428, 253–262. doi:10.1016/j.scitotenv.2012.03.051 Schreck, E., Laplanche, C., Le Guédard, M., Bessoule, J.-J., Austruy, A., Xiong, T., Foucault, Y., Dumat, C., 2013. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure. Environ. Pollut. 179, 242–249. Schröder, J.L., Basta, N.T., Casteel, S.W., Evans, T.J., Payton, M.E., Si, J., 2004. Validation of the invitro gastrointestinal (IVG) method to estimate relative bioavailable Pb in contaminated soils. J. Environ. Qual. 33, 513–521. Schroeder, H.A., Balassa, J.J., 1963. Cadmium: Uptake by Vegetables from Superphosphate in Soil. Science 140, 819–820. doi:10.1126/science.140.3568.819 Schwartz, C., 2013. Les sols de jardins, supports d’une agriculture urbaine intensive. VertigO - Rev. Électronique En Sci. Environ. doi:10.4000/vertigo.12858 Selosse, M.-A., Le Tacon, F., 1998. The land flora: a phototroph-fungus partnership? Trends Ecol. Evol. 13, 15–20. Shahid, M., Dumat, C., Khalid, S., Niazi, N.K., Antunes, P.M.C., 2016. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. Springer New York, New York, NY. Shahid, M., Dumat, C., Pourrut, B., Sabir, M., Pinelli, E., 2014. Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J. Geochem. Explor. doi:10.1016/j.gexplo.2014.01.003 Shahid, M., Dumat, C., Pourrut, B., Silvestre, J., Laplanche, C., Pinelli, E., 2013a. Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J. Soils Sediments 14, 835–843. Shahid, M., Ferrand, E., Schreck, E., Dumat, C., 2013b. Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity. Rev. Environ. Contam. Toxicol. 221, 107–127. doi:10.1007/978-1-4614-4448-0_2 Shahid, M., Pinelli, E., Dumat, C., 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J. Hazard. Mater. 219–220, 1–12. Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., Dumat, C., 2011. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol. Environ. Saf. 74, 78–84. Shahid, M., Xiong, T., Castrec-Rouelle, M., Leveque, T., Dumat, C., 2013c. Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J. Environ. Sci. 25, 2451–2459. Sharma, A., Sharma, H., 2013. Role of Vesicular Arbuscular Mycorrhiza in the Mycoremediation of Heavy Toxic Metals From Soil. Int J LifeSc Bt Pharm Res 2, 2418–2431. Shi, Z., Cao, Z., Qin, D., Zhu, W., Wang, Q., Li, M., Wang, G., 2013. Correlation Models between Environmental Factors and Bacterial Resistance to Antimony and Copper. PLOS ONE 8, e78533. Shtangeeva, I., Steinnes, E., Lierhagen, S., 2012. Uptake of different forms of antimony by wheat and rye seedlings. Environ. Sci. Pollut. Res. 19, 502–509. doi:10.1007/s11356-011-0589-y Simon, U.K., Weiß, M., 2008. Intragenomic Variation of Fungal Ribosomal Genes Is Higher than Previously Thought. Mol. Biol. Evol. 25, 2251–2254. doi:10.1093/molbev/msn188 Singh, S., Kumar, M., 2006. Heavy Metal Load Of Soil, Water And Vegetables In Peri-Urban Delhi. Environ. Monit. Assess. 120, 79–91. doi:10.1007/s10661-005-9050-3 Skjemstad, J., Baldock, J., 2007. Total and Organic Carbon, in: Soil Sampling and Methods of Analysis. CRC Press. Slooff, W., Bont, P., Hesse, J., Loos, B., 1992. Exploratory report. Antimony and antimony compounds. Smichowski, P., 2008. Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols. Talanta 75, 2–14. doi:10.1016/j.talanta.2007.11.005 Smith, S.E., Smith, F.A., 2011. Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annu. Rev. Plant Biol. 62, 227–250. doi:10.1146/annurev-arplant-042110-103846

216 Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R., 2010. Chapter 2 - A Review of Biochar and Its Use and Function in Soil, in: Agronomy, B.-A. in (Ed.), Advances in Agronomy. Academic Press, pp. 47–82. Sposito, G., 2008. The Chemistry of Soils, Second Edition. ed. OUP USA. Steely, S., Amarasiriwardena, D., Xing, B., 2007. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Environ. Pollut. 148, 590–598. Sterrett, S.B., Chaney, R.L., Gifford, C.H., Mielke, H.W., 1996. Influence of fertilizer and sewage sludge compost on yield and heavy metal accumulation by lettuce grown in urban soils. Environ. Geochem. Health 18, 135–142. Sudová, R., Doubková, P., Vosátka, M., 2008. Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: Combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Applied Soil Ecology 40, 19–29. doi:10.1016/j.apsoil.2008.02.007 Sudová, R., Sýkorová, Z., Rydlová, J., Čtvrtlíková, M., Oehl, F., 2015. Rhizoglomus melanum, a new arbuscular mycorrhizal fungal species associated with submerged plants in freshwater lake Avsjøen in Norway. Mycol. Prog. 14, 1–8. doi:10.1007/s11557-015-1031-5 Sun, Y., Zhang, X., Wu, Z., Hu, Y., Wu, S., Chen, B., 2016. The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. Journal of Environmental Sciences, 40th Anniversary of RCEES 39, 110–118. doi:10.1016/j.jes.2015.10.005 Sundar, S., Chakravarty, J., 2010. Antimony Toxicity. Int. J. Environ. Res. Public. Health 7, 4267–4277. Sýkorová, Z., Ineichen, K., Wiemken, A., Redecker, D., 2007. The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18, 1–14. doi:10.1007/s00572-007-0147-0

T Tedersoo, L., Anslan, S., Bahram, M., et al, 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43. Tedersoo, L., Bahram, M., Põlme, S., et al, 2014. Global diversity and geography of soil fungi. Science 346, 1256688. doi:10.1126/science.1256688 Tella, M., 2009. Impact de la matière organique sur le transport de l’antimoine dans les eaux naturelles : étude expérimentale et modélisation physico-chimique. Thornton, I., Abrahams, P., 1983. Soil ingestion — a major pathway of heavy metals into livestock grazing contaminated land. Sci. Total Environ. 28, 287–294. doi:10.1016/S0048-9697(83)80026-6 Tighe, M., Lockwood, P., Wilson, S., 2005. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J. Environ. Monit. 7, 1177. doi:10.1039/b508302h Tisarum, R., Lessl, J.T., Dong, X., de Oliveira, L.M., Rathinasabapathi, B., Ma, L.Q., 2014. Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata. Environ. Pollut. 186, 110–114. Tomko, J., Bačkor, M., Štofko, M., 2006. Biosorption of heavy metals by dry fungi biomass. Acta Metall. Slovaca 12, 447–51. Tonin, C., Vandenkoornhuyse, P., Joner, E.J., Straczek, J., Leyval, C., 2001. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10, 161–168. doi:10.1007/s005720000072 Trasar-Cepeda, C., Camiña, F., Leirós, M.C., Gil-Sotres, F., 1999. An improved method to measure catalase activity in soils. Soil Biol. Biochem. 31, 483–485. doi:10.1016/S0038-0717(98)00153-9 Tremel-Schaub, A., Feix, I., 2005. Contamination des sols, Transferts des sols vers les plantes. ADEME Editions. Trevors, J.T., 1984. Dehydrogenase activity in soil: A comparison between the INT and TTC assay. Soil Biol. Biochem. 16, 673–674. doi:10.1016/0038-0717(84)90090-7 Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G., Berta, G., 2006. Arbuscular mycorrhizae increase the As translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65, 74–81. Tschan, M., Robinson, B., Johnson, C.A., Bürgi, A., Schulin, R., 2010. Antimony uptake and toxicity in sunflower and maize growing in SbIII and SbV contaminated soil. Plant Soil 334, 235–245. doi:10.1007/s11104-010-0378-2 Tschan, M., Robinson, B.H., Nodari, M., Schulin, R., 2009a. Antimony uptake by different plant species from nutrient solution, agar and soil. Environ. Chem. 6, 144–152. Tschan, M., Robinson, B.H., Schulin, R., 2009b. Antimony in the soil-plant system-a review. Environ. Chem. 6, 106. Turner, B.L., 2010. Variation in pH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils. Appl. Environ. Microbiol. 76, 6485–6493. doi:10.1128/AEM.00560-10 Tyksiński, W., Kurdubska, J., 2005. Differences in cadmium and lead accumulation by lettuce (Lactuca sativa L.) depending on the cultivar. Acta Sci Pol Hortorum Cultus 4, 77–83.

217

U Uchimiya, M., Bannon, D.I., Wartelle, L.H., 2012. Retention of Heavy Metals by Carboxyl Functional Groups of Biochars in Small Arms Range Soil. J. Agric. Food Chem. 60, 1798–1809. doi:10.1021/jf2047898 Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A., Lima, I.M., 2011. Influence of Pyrolysis Temperature on Biochar Property and Function as a Heavy Metal Sorbent in Soil. J. Agric. Food Chem. 59, 2501–2510. USEPA, 2006. Drinking water regulations and health advisories (No. 822-NaN-06–013). Washington. Uzu, G., Sobanska, S., Aliouane, Y., Pradere, P., Dumat, C., 2009. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ. Pollut., The Behaviour and Effects of Nanoparticles in the Environment 157, 1178–1185. doi:10.1016/j.envpol.2008.09.053 Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., Dumat, C., 2010. Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environ. Sci. Technol. 44, 1036–1042. doi:10.1021/es902190u

V Vaccari, D.A., 2009. Phosphorus: a looming crisis. Sci. Am. 300, 54–59. Vierheilig, H., Coughlan, A.P., Wyss, U., Piche, Y., 1998. Ink and Vinegar, a Simple Staining Technique for Arbuscular-Mycorrhizal Fungi. Appl. Environ. Microbiol. 64, 5004–5007. Violante, A., Cozzolino, V., Perelomov, L., Caporale, A.G., Pigna, M., 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 10, 268–292. Vithanage, M., Rajapaksha, A.U., Dou, X., Bolan, N.S., Yang, J.E., Ok, Y.S., 2013. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. J. Colloid Interface Sci. 406, 217–224. doi:10.1016/j.jcis.2013.05.053 Viti, C., Tatti, E., Decorosi, F., Lista, E., Rea, E., Tullio, M., Sparvoli, E., Giovannetti, L., 2010. Compost Effect on Plant Growth-Promoting Rhizobacteria and Mycorrhizal Fungi Population in Maize Cultivations. Compost Sci. Util. 18, 273–281. doi:10.1080/1065657X.2010.10736966 Vivas, A., Vörös, A., Biró, B., Barea, J.M., Ruiz-Lozano, J.M., Azcón, R., 2003. Beneficial effects of indigenous Cdtolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology 24, 177–186. doi:10.1016/S0929-1393(03)00088-X Vogel-Mikuš, K., Drobne, D., Regvar, M., 2005. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution 133, 233–242. doi:10.1016/j.envpol.2004.06.021

W Wagner, S.E., Peryea, F.J., Filby, R.A., 2003. Antimony impurity in lead arsenate insecticide enhances the antimony content of old orchard soils. J. Environ. Qual. 32, 736–738. Wallmann, K., Kersten, M., Gruber, J., Förstner, U., 1993. Artifacts in the Determination of Trace Metal Binding Forms in Anoxic Sediments by Sequential Extraction. Int. J. of Enviro. Anal. Chem. 51, 187–200. Walpole, S.C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G., Roberts, I., 2012. The weight of nations: an estimation of adult human biomass. BMC Public Health 12, 439. doi:10.1186/1471-2458-12-439 Wan, X., Tandy, S., Hockmann, K., Schulin, R., 2013. Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake. Environ. Pollut. 172, 53–60. doi:10.1016/j.envpol.2012.08.010 Wang, C., Ouyang, H., Wang, J., Liu, J., Zhang, X., Wang, Y., 2003. Impact of lead pollution in environment on children’s health in Shenyang City. Huan Jing Ke Xue Huanjing Kexue Bian Ji Zhongguo Ke Xue Yuan Huan Jing Ke Xue Wei Yuan Hui Huan Jing Ke Xue Bian Ji Wei Yuan Hui 24, 17–22. Wang, C.Y., 1919. Antimony: Its history, chemistry, mineralogy, geology, metallurgy, uses, preparations, analysis, production, and valuation; with complet bibliographies., Charles Griffin & Cie. ed. Wang, G., Su, M.-Y., Chen, Y.-H., Lin, F.-F., Luo, D., Gao, S.-F., 2006. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut., Soil and Sediment Remediation (SSR)Soil and Sediment Remediation (SSR) 144, 127–135. Wang, J., Fang, W., Yang, Z., Yuan, J., Zhu, Y., Yu, H., 2007. Inter- and Intraspecific Variations of Cadmium Accumulation of 13 Leafy Vegetable Species in a Greenhouse Experiment. J. Agric. Food Chem. 55, 9118–9123. Wang, M., Bezemer, T.M., Putten, W.H. van der, Biere, A., 2015. Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata). J. Chem. Ecol. 41, 1006–1017.

218 Wang, Q., He, M., Wang, Y., 2010. Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities. Ecotoxicology 20, 9–19. doi:10.1007/s10646-010-0551-7 Warming, M., Hansen, M.G., Holm, P.E., Magid, J., Hansen, T.H., Trapp, S., 2015. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health? Environ. Pollut. 202, 17–23. Wei, Y., Chen, Z., Wu, F., Hou, H., Li, J., Shangguan, Y., Zhang, J., Li, F., Zeng, Q., 2015. Molecular diversity of arbuscular mycorrhizal fungi at a large-scale antimony mining area in southern China. J. Environ. Sci. 29, 18–26. Wei, Y., Su, Q., Sun, Z., Shen, Y., Li, J., Zhu, X., Hou, H., Chen, Z., Wu, F.C., 2016. The role of arbuscular mycorrhizal fungi in plant uptake, fractions, and speciation of antimony. Appl. Soil Ecol. 107, 244–250. Wen, B., Xiao-yu, H., Ying, L., Wei-sheng, W., 2004. The role of earthworm (Eisenia fetida) in influencing bioavailability of heavy metals in soils. Biol Fertil Soils 181–187. doi:10.1007/s00374-004-0761-3 Werkenthin, M., Kluge, B., Wessolek, G., 2014. Metals in European roadside soils and soil solution – A review. Environ. Pollut. 189, 98–110. doi:10.1016/j.envpol.2014.02.025 WHO, 2008. Guidelines for drinking-water quality, III ed, incorporating first and second addenda. WHO, Geneva. WHO, 2003. Sb in drinking-water. WHO, Geneva. Wierzbicka, M., 1987. Lead accumulation and its translocation barriers in roots of Allium cepa L.-autoradiographic and ultrastructural studies. Plant Cell Environ. 10, 17–26. doi:10.1111/j.1365-3040.1987.tb02075.x Wilson, S.C., Lockwood, P.V., Ashley, P.M., Tighe, M., 2010. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 158, 1169–1181. Winship, K.A., 1987. Toxicity of antimony and its compounds. Adverse Drug React. Acute Poisoning Rev. 6, 67-90. Wiseman, C.L.S., Zereini, F., Püttmann, W., 2013. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 442, 86–95. doi:10.1016/j.scitotenv.2012.10.051 Wong, C., Li, X., Thornton, I., 2006. Urban environmental geochemistry of trace metals. Environ. Pollut. 142, 1-16. Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., Gron, C., Oomen, A., Reimer, K., Tack, K., Van de Wiele, T., 2011. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci. Total Environ. 409, 4016–4030. doi:10.1016/j.scitotenv.2011.05.019 Wu, F., Fu, Z., Liu, B., Mo, C., Chen, B., Corns, W., Liao, H., 2011. Health risk associated with dietary co-exposure to high levels of Sb and As in the world’s largest antimony mine area. Sci. Total Environ. 409, 3344–3351. Wu, F.Y., Ye, Z.H., Wong, M.H., 2009. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76, 1258–1264. doi:10.1016/j.chemosphere.2009.05.020 Wu, Q.-S., Xia, R.-X., 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163, 417–425.

X Xi, J., He, M., Lin, C., 2010. Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid. Environ. Earth Sci. 60, 715–722. doi:10.1007/s12665-009-0209-z Xi, J., He, M., Zhang, G., 2014. Antimony adsorption on kaolinite in the presence of competitive anions. Environ. Earth Sci. 71, 2989–2997. doi:10.1007/s12665-013-2673-8 Xiao, X.-Y., guo, Z.-H., luo, Y.-P., Bi, J.-P., yang, M., huang, D.-Q., 2015. Effect of Antimony on Physiological Responses of Green Chinese Cabbage and Enzyme Activities of Allitic Udic Ferrisols. Pedosphere 25, 124–129. Xiong, T., 2015. Bioavailability of metal(loid)s from micro-and nanometric particles in relation with their phytotoxicity. Xiong, T., Austruy, A., Pierart, A., Shahid, M., Schreck, E., Mombo, S., Dumat, C., 2016a. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J. Environ. Sci. doi:10.1016/j.jes.2015.08.029 Xiong, T., Dumat, C., Pierart, A., Shahid, M., Kang, Y., Li, N., Bertoni, G., Laplanche, C., 2016b. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant– atmosphere transfers in urban areas, South China. Environ. Geochem. Health 1–19. Xiong, T.-T., Leveque, T., Austruy, A., Goix, S., Schreck, E., Dappe, V., Sobanska, S., Foucault, Y., Dumat, C., 2014a. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ. Geochem. Health 1–13. doi:10.1007/s10653-014-9607-6 Xiong, T.-T., Leveque, T., Shahid, M., Foucault, Y., Dumat, C., 2014b. Pb and Cd phytoavailability and human bioaccessibility for vegetables exposed to soil or atmosphere pollution by process ultrafine particles. J. Environ. Qual. doi:10.2134/jeq2013.11.0469. Xu, W., Wang, H., Liu, R., Zhao, X., Qu, J., 2011. The mechanism of antimony(III) removal and its reactions on the surfaces of Fe–Mn Binary Oxide. J. Colloid Interface Sci. 363, 320–326. doi:10.1016/j.jcis.2011.07.026 Xu, Z., Ban, Y., Yang, R., Zhang, X., Chen, H., Tang, M., 2016. Impact of Funneliformis mosseae on the growth, lead uptake, and localization of Sophora viciifolia. Can. J. Microbiol. 62, 361–373. doi:10.1139/cjm-2015-0732

219

Y Yadav, S.K., 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot. 76, 167–179. doi:10.1016/j.sajb.2009.10.007 Yang, N., Sun, H., 2009. Application of Arsenic, Antimony and Bismuth in medicine. Prog. Chem. 21, 856–865. Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., He, L., Lin, X., Che, L., Ye, Z., Wang, H., 2016. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res. 23, 974–984. doi:10.1007/s11356-015-4233-0 Yu, X., Cheng, J., Wong, M.H., 2005. Earthworm–mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biology and Biochemistry 37, 195–201. doi:10.1016/j.soilbio.2004.07.029 Yu, Y., Zhang, S., Huang, H., Luo, L., Wen, B., 2009. Arsenic Accumulation and Speciation in Maize as Affected by Inoculation with Arbuscular Mycorrhizal Fungus Glomus mosseae. Journal of Agricultural and Food Chemistry 57, 3695–3701. Yu, Y., Zhang, S., Wen, B., Huang, H., Luo, L., 2011. Accumulation and Speciation of Selenium in Plants as Affected by Arbuscular Mycorrhizal Fungus Glomus mosseae. Biol Trace Elem Res 143, 1789–1798. doi:10.1007/s12011011-8973-5

Z Zhang, K., Yuan, J., Kong, W., Yang, Z., 2013. Genotype variations in Cd and Pb accumulations of leafy lettuce and screening for pollution-safe cultivars for food safety. Environ. Sci. Process. Impacts 15, 1245–1255. Zhang, X., Chen, B., Ohtomo, R., 2015. Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Sci. Plant Nutr. 61, 359–368. doi:10.1080/00380768.2014.985578 Zhao, F.J., Ma, J.F., Meharg, A.A., McGrath, S.P., 2009. Arsenic uptake and metabolism in plants. New Phytol. 181, 777–794. doi:10.1111/j.1469-8137.2008.02716.x Zhu, T., Melamed, M.L., Parrish, D., Gauss, M., Galladero Klenner, L., Lawrence, M., Konare, A., Liousse, C., 2012. WMO/IGAC Impacts of Megacities on Air Pollution and Climate (No. 205). World Meteorological Organization. Zhu, X., Yang, F., Wei, C., Liang, T., 2015. Bioaccessibility of heavy metals in soils cannot be predicted by a single model in two adjacent areas. Environ. Geochem. Health 38, 233–241. doi:10.1007/s10653-015-9711-2 Zhuang, P., McBride, M.B., Xia, H., Li, N., Li, Z., 2009. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 407, 1551–1561. ZHUANG, P., ZOU, H., SHU, W., 2009. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: Field study. J. Environ. Sci. 21, 849–853. doi:10.1016/S1001-0742(08)62351-7 Zorrig, W., El Khouni, A., 2013. Lettuce (Lactuca sativa): a species with a high capacity for Cd accumulation and growth stimulation in the presence of low Cd concentrations. J. Hortic. Sci. Biotechnol. 88, 783–789. Zouari, I., Salvioli, A., Chialva, M., Novero, M., Miozzi, L., Tenore, G.C., Bagnaresi, P., Bonfante, P., 2014. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics 15, 221.

PIERART Antoine

TITLE: Role of arbuscular mycorrhizal fungi and bioamendments in the transfer and human bioaccessibility of Cd, Pb, and Sb contaminant in vegetables cultivated in urban areas ABSTRACT: Urban agriculture (UA) and pollution are two worlds more inter-connected every day, creating one of the main challenges of sustainable cities as persistent metal(loid) contamination increases as much as the interest for urban agriculture. Biofertilizers and bioamendments used in UA (arbuscular mycorrhizal fungi, compost, and biochar) can influence the mobility of contaminants in soil. This study aims to better understand the fate of anthropic or geogenic, major (Cd, Pb) and emerging (Sb), inorganic contaminants in soil-plant-biofertilizer systems and their human bioaccessibility. While contaminant mobility in soil is affected by biofertilizers, their origin influences also their bioaccessibility. The fungal community seems crucial in this phenomenon but is impacted by compost addition. Hence, using these biofertilizers in contaminated soils has to be thought wisely because of the multiple interactions affecting contaminant’s phytoavailability. -KEYWORDS: Mycorrhization, Trace Elements, Transfer, Bioaccessibility, Enzymatic Activity, Biochar

AUTEUR : PIERART Antoine -DIRECTRICES DE THESE : DUMAT Camille et SEJALON-DELMAS Nathalie LIEU ET DATE DE SOUTENANCE : Toulouse

TITRE : Rôle des champignons mycorhiziens à arbuscules et des bioamendments dans le transfert et la bioaccessibilité humaine de Cd, Pb et Sb vers les végétaux cultivés en milieu urbain. RESUME : Pollution et agriculture urbaine (AU) sont deux mondes interconnectés soumettant les villes au défi de la durabilité, dans un contexte où la pollution aux metalloïdes augmente au moins autant que l’intérêt pour l’agriculture urbaine. Les biofertilisants / bioamendements utilisés en AU (champignons mycorhiziens à arbuscules, compost, biochar) peuvent influencer la mobilité des polluants du sol. Cette étude vise à mieux comprendre le devenir de contaminants inorganiques géogéniques et anthropiques, majeurs (Cd, Pb) ou émergents (Sb), dans des systèmes sol-plante-biofertilisant et leur bioaccessibilité pour l’homme. Si la mobilité des polluants est modifiée par les biofertilisants, le type de source influence aussi leur bioaccessibilité. La communauté fongique semble cruciale dans ces phénomènes mais est impactée par l’ajout de compost. Ainsi, l’utilisation de ces biofertilisants sur sol pollué est à raisonner du fait des interactions multiples affectant la phytodisponibilité des polluants. -MOTS-CLES : Mycorhization, Eléments traces métalliques, Transfert, Bioaccessibilité, Activité enzymatique, Biochar

DISCIPLINE ADMINISTRATIVE : Ecologie Fonctionnelle

INTITULE ET ADRESSE DU LABORATOIRE : Ecolab – Laboratoire d’Ecologie Fonctionnelle et Environnement Av. de l’Agrobiopôle BP 32607 Auzeville Tolosane France

TH`ESE - M.MOAM.INFO (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Lakeisha Bayer VM

Last Updated:

Views: 5951

Rating: 4.9 / 5 (49 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Lakeisha Bayer VM

Birthday: 1997-10-17

Address: Suite 835 34136 Adrian Mountains, Floydton, UT 81036

Phone: +3571527672278

Job: Manufacturing Agent

Hobby: Skimboarding, Photography, Roller skating, Knife making, Paintball, Embroidery, Gunsmithing

Introduction: My name is Lakeisha Bayer VM, I am a brainy, kind, enchanting, healthy, lovely, clean, witty person who loves writing and wants to share my knowledge and understanding with you.